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Abstract

This thesis details the creation of a novel supernova spectral classification tool, DASH, that

has been developed primarily for the OzDES collaboration as a replacement to current classi-

fication tools. The main aim was to improve upon the speed and ease of classification while

not compromising accuracy. DASH has used a completely new approach that does not rely on

iterative template matching techniques like all previous software, but instead classifies based

on the features of each supernova type and age bin. It has achieved this by employing a deep

neural network to train a matching algorithm. This has enabled DASH to be over 100 times

faster than Superfit while also being just as accurate. This has been tested using the latest

OzDES ATEL data, where DASH has accurately classified each spectrum with a higher degree

of certainty.

The deep learning model was developed using Tensorflow, and has involved defining 306 dif-

ferent classification bins made up of 17 supernova subtypes and 18 age bins. The model was

trained using the Obelix Supercomputer at UQ and made use of nearly 4000 supernova tem-

plates from SNID and the Berkeley SN Ia Program. The trained model is independent of the

number of templates, which allows for DASH’s unprecedented speed. Two user interfaces

available on GitHub and PyPI have been developed. These include a graphical interface for

easy visual classification and analysis of supernovae, and a python library for the autonomous

and quick classification of several supernova spectra.

The speed, accuracy, user-friendliness, and versatility of DASH presents an advancement to

existing spectral classification tools, and is a viable alternative for the astronomy community.
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Chapter 1

Introduction

1.1 Motivation

While the notion of an expanding universe is not a new phenomenon, the 1998 discovery [31,

34, 37] that this expansion rate is accelerating and not slowing down was a major challenge

to our understanding of the composition of the universe. The discovery led to the 2011 Nobel

Prize in physics, but the cause of the acceleration remains unknown. The known luminosity

of Type Ia Supernovae (SNIa) have provided some of the most compelling evidence for this

discovery, and continues to be a major focus of study.

The Dark Energy Survey in Australia (OzDES) is currently in a mature stage of its life span

- being in its fourth year of its five-year spectroscopic survey on the 3.9m Anglo-Australian

Telescope (AAT) [11, 20]. The goal of the survey is to understand the cause of the universe’s

acceleration to determine whether theories supporting "dark energy" in the form of Einstein’s

cosmological constant, or theories replacing General Relativity with a modified theory of grav-

ity on cosmic scales can be ruled out. To this end, the survey is observing tens of thousands of

objects, with the hope of measuring approximately 2500 Type Ia supernova host galaxies [45].

Currently, the process of classifying these astronomical objects is enormously time-consuming,

and prone to human-bias and human-error. The development of a software that can automate

the classification process is of high interest to the supernova analysis community.



2 Chapter 1. Introduction

1.2 Scope

One of OzDES’s key aims is to measure the redshifts and luminosities of approximately 2500

Type-Ia supernova host galaxies [19, 20]. To prevent contamination from other supernova

types, OzDES must be able to classify the targets. This project will aim to develop a software

which can minimise the human-time involved in classification, while also limiting human bias

and error so that spectra from the AAT can be objectively, quickly and accurately classified.

The observed objects will predominantly be supernovae, however, the program should be able

to broadly determine the transient type. Within this, the software should accurately classify the

exact supernova type, its redshift, and age since maximum light.

The AAT spectra of supernova events will also be intermixed with a lot of light from the host

galaxy, and may contain a lot of background noise and high-frequency features due to the

various issues outlined in Chapter 2. The software should be able to distinguish the type of

supernova spectrum from the intermixed host-galaxy, and account for some low signal-to-noise

spectra.

The goal is to build upon previous software, to design a program capable of automating the

classifying process, while also aiming to improve upon the speed and accuracy of classification

compared to previous work. Ideally, it should be capable of making humans as obsolete as

possible in this process, so that scientist’s time can be better used, and so that human error can

be minimised. Overall, the project should be accurate, fast, and user-friendly.

One of the primary innovations of this thesis is the use of a machine learning technique called

deep neural networks (or deep learning). Previous spectral classification tools all make use

of statistical classification techniques such as cross-correlations [7, 15, 4, 36] or chi-squared

minimisation approaches [16] based on matching an input with a set of templates. In this

thesis, I have utilised a novel approach to the problem that has significantly improved upon

the speed and objectiveness of current methods (see Chapter 9).
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1.2.1 Wider Context

There has been a significant amount of interest in my classification tool from not only OzDES,

but also from a lot of scientists in the wider international DES (Dark Energy Survey) community

in the United States and Europe. For this reason, while the main aim of the project is to develop

a classification tool specifically for the OzDES collaboration, I have written the software so that

it can be used for spectral data in a range of different file types from any worldwide telescope.

As such, the software has been made open-source and available on PyPI and GitHub for the

worldwide astronomy community.

Moreover, to enable easy uptake of this tool over current tools, DASH (name of my classifica-

tion tool) has been made available in two different interfaces. Firstly, an easy to use graphical

interface has been developed for visualisation and easy classification of spectral data files. Sec-

ondly, it has also been made available as an importable python library available on PyPI, so

that classifications can be incorporated into the user’s work, and so that several spectra can

be classified iteratively. To this end, unlike previous tools, my software has been written in

the Python programming language for the reason that it is one of the most popularly used

languages among astronomers.
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Chapter 2

Background

2.1 Astronomical Objects

The targets being observed by the AAT primarily consist of transient astronomical objects,

which refer to phenomenon whose duration lasts from seconds to days, weeks or years. The

different astronomical objects that will need to be classified include supernovae, galaxies, Ac-

tive Galactic Nuclei (AGNs), Luminous Blue Variables (LBVs), and M-Stars. DASH should be

able to broadly identify the type of object being observed, however, an accurate classification

of the non-supernovae objects is outside the scope of the project.

2.1.1 Flux, Luminosity, and Magnitude System

In astronomy, the amount of light detected by a telescope is called ’flux’. This is analogous

to how bright a star looks to us from Earth. However, due to the fact that objects further

away appear as being dimmer, astronomers use a consistent measurement of the actual energy

output from an astronomical body called the ’luminosity’. This is a measure of the total amount

of energy emitted by an object per unit time. In SI units, luminosity is measured in Joules per

second or Watts. The relationship between Flux and Luminosity is shown in equation 2.1,

L = 4πd2F, (2.1)
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where L is the luminosity, F is the Flux, and d is the distance to the object. Because these num-

bers are generally very large, astronomers find it more convenient to use a unit-less log scale

convention for both luminosity and flux called absolute and apparent magnitude, respectively.

The apparent magnitude of two astronomical objects A and B is related to the flux of the objects

by the following equation,

mA −mB = −2.5 log10

(
FA
FB

)
(2.2)

where m is the apparent magnitude. Similarly, the absolute magnitude is related to the lumi-

nosity. Equation 2.3 shows the relationship between the absolute magnitude, M , to the appar-

ent magnitude, and distance to the object in mega-parsecs.

m−M = −5 + log10(d). (2.3)

2.1.2 Supernovae

The primary targets of OzDES are supernovae. Supernovae are the result of the core-collapse of

massive stars or the thermonuclear explosions of white dwarfs. They are classified based on the

presence of certain features in their optical spectrum taken near maximum light as illustrated

in Figure 2.1.

Types

Supernovae are classified into four broad types Type-Ia, Type-Ib, Type-Ic, Type-II.

Type-Ia supernovae (or SNIa) are the most important targets of the survey. Unlike the other

types, SNIa’s are caused by the thermonuclear reaction of a binary star system consisting

of a white-dwarf accreting matter from a companion star. The white-dwarf eventually

accretes so much mass that its core reaches a critical density that causes an uncontrolled

fusion of carbon and oxygen, releasing a consistent amount of energy. The amount of

energy released at peak luminosity is standardisable among all Type-Ia supernovae, and

it has thus been used as a standard candle in the universe to measure cosmic distances.
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FIGURE 2.1: The different supernovae types are classified based on the presence
or absence of certain chemical features in their spectrum. [42]

Type-Ib supernovae (or SNIb) are stellar explosions caused by the core collapse of massive

stars. They are identified by the fact that they contain Helium and not Silicon in their

spectra.

Type-Ic supernovae (or SNIc) are similar to Type-Ib except that they lack the Helium absorp-

tion line in their spectra.

Type-II supernovae (or SNII) are caused by the core collapse of massive stars and are identified

by the presence of Hydrogen in their spectra.

Within each of these broad types, several more specific subtypes have been defined by as-

tronomers due to a range of different characteristics in the observed spectra. In fact, supernova

types are defined by variations in their spectral appearance rather than the physical mechanism

that causes them. The reason for this is often due to the mechanisms not being well understood

[42].

As outlined in Chapter 5, the supernova types used for classification in this thesis are based on

the types defined in [38, 7, 25]. These 17 subtypes are listed below next to their broad type.
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SNIa: Ia-norm, Ia-91T, Ia-91bg, Ia-02cx, Ia-csm, Ia-pec

SNIb: Ib-norm, Ibn, IIb, Ib-pec

SNIc: Ic-norm, Ic-broad, Ic-pec

SNII: IIP, IIL, IIn, II-pec

The unprecedented number of supernovae being collected by OzDES means that it is possi-

ble that the survey will discover supernovae that do not fit into any of these categories, and

perhaps require new physics to be able to be understood. One such example is the recently

discovered superluminous supernovae (SLSN) [39]. These SLSN’s have been categorised as a

Ia-pec. If newer supernova types are discovered, it is expected that the software will flag that

the spectrum cannot be identified accurately.

Age

Unlike many other astronomical objects, supernovae are transients, whereby their spectra changes

with time and are only visible for a few weeks. The age of a supernova is defined as the num-

ber of days after it emits its maximum light. Figure 2.2 illustrates the bolometric light curve of

an example supernova. The supernova builds to a maximum luminosity very quickly before

decreasing in intensity. Because of the rapid change in the mechanics of the supernova event

over time, the spectrum changes as time passes. Thus, each supernova object must not only be

classified as a specific type, but its age must also be determined.

The 17 different supernova types listed above are plotted in Figure 5.1 shown in Chapter 5.

However, each of these 17 types change with time (or age). One of the supernova types (Ia-

norm) is plotted at various different ages in Figure 5.2.

2.1.3 Galaxies

Each of the supernovae observed by the AAT will include light from the host galaxy intermixed

in the spectra. The software in this project aims to classify the supernova from the intermixed
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FIGURE 2.2: Example of the bolometric luminosity of a supernovae over time.
The time at peak luminosity corresponds to an age of zero days. [10]

spectrum.

There are three main types of galaxies: Elliptical, Spiral, and Irregular. Within these types, the

spectra can change greatly depending on the star formation rates, the relative composition of

star types and gas, and its structure. While it would be convenient if a spectrum of the galaxy

before the supernova event was available so that the galaxy light can be subtracted from the

combined spectrum, it is often unavailable due to the limited telescope time.

2.2 Astronomical Spectra

The spectrographs on the AAT enable the flux from the observed object to be separated into its

constituent wavelengths. A plot of the flux at different wavelengths can be used to determine a

lot of information about an astronomical object. An example spectrum of a type-1a supernova

at zero redshift is illustrated in figure 2.3.
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FIGURE 2.3: Spectrum of the Type-1a supernova ’2002bo’ at zero redshift. each
of the peaks and troughs correspond to the absorption and emission lines caused

by different chemical compounds present in the supernova.

2.2.1 Spectroscopic Features

Different chemical compounds (such as Hydrogen, Helium, Silicon etc.) emit or absorb light

at known specific frequencies due to their atomic transitions. If a spectrum has a high enough

signal-to-noise ratio, the peaks and troughs (which correspond to emission and absorption

lines, respectively) in the spectrum can be used to determine the elements contained in the

object (Figure 2.3). Based on the specific chemical features in the spectrum, the type of astro-

nomical object can be determined.

2.2.2 Redshift

The expansion of the universe causes electromagnetic radiation to be stretched in proportion

to the distance travelled by a photon. This stretching is called cosmological redshift, and is ob-

served as an increase in the wavelength compared to the emitted wavelength. The relationship

between the cosmological redshift, z, and the observed and emitted wavelengths is detailed in
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the following equation,

z =
λobserved
λemitted

− 1. (2.4)

Thus, if the wavelength has doubled in size when it was observed compared to when it was

emitted, the redshift is z = 1, whereas objects that have not been redshifted and hence, are

very close to us, have a redshift z = 0. The cosmological redshift can be thence determined by

comparing a spectrum to an zero-redshift template.

Moreover, objects that are further away, or were emitted at an earlier point in time will have

travelled through more expanding space, and would thus have a higher redshift. The rate that

space is expanding is given by Hubble’s law which states that the recession velocity caused by

expanding space is faster as the distance increases. This is formalised in the following equation,

D =
H

v
(2.5)

where D is the co-moving distance to the object, v is the apparent recession velocity, and H

is Hubble’s constant. Due to the fact that the exact value of Hubble’s constant, and the exact

distance is dependent on the cosmological model used - which is still being actively considered

[12, 28] - astronomers prefer to use redshift instead of time or distance.

This project will use translations in the spectra to determine cosmological redshift. However,

redshift estimates can also be obtained from photometric data. Whilst photometric data has

the advantage of being able to redshift fainter objects, photometric redshifts are not as accurate

as spectroscopic measurements [9]. Moreover, the OzDES team is making use of the AAT with

the AAOmega spectrograph [45], and thus only require spectroscopic redshifting.

2.2.3 Distortions

The spectra from the AAT is subject to distortions caused by Interstellar dust, and sky lines in

the earth’s atmosphere due to the fact that the AAT is a ground-based telescope. The signal

may also be contaminated with background noise.
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Interstellar Dust

Dust grains in the interstellar medium are solid, macroscopic particles composed of dielectric

and refractory materials. The dust particles can cause wavelength-specific extinction of light,

polarization of light by scattering, absorption of starlight, and infrared emission from heated

grains [33]. These absorption features can remove useful lines used for matching spectra, or

can appear as features in the spectrum that are not a part of the object.

Interstellar extinction refers to the dust particles extinguishing starlight passing through them.

The amount of selective extinction is given by,

EB−V (λ) =
AV (λ)

RV
(2.6)

where AV (λ) is the total extinction at a specific wavelength, and RV is an empirically found

parameter that indicates the ratio of the total to selective extinction [33]. Observationally, RV

ranges between 2 and 6, but previous work usually adopts a value of RV = 3.1 for diffuse

interstellar medium, and RV = 5 for dense molecular clouds.

Extinction tends to increase with decreasing wavelength, and hence, RV is a measure of the rel-

ative slope of the extinction curve. The simple one-parameter model tends to be reasonably ac-

curate for wavelengths between 3000Å and 7000Å. Above 7000Å, however, the extinction law

is essentially independent of RV , while below 3000Å, multiple parameters are required to ade-

quately fit the observed extinction. In the UV (ultraviolet) to NIR (near-infrared) wavelengths,

the interstellar extinction law is Aλ ∝ λ−1 [33]. A plot of the extinction against wavelength is

illustrated in Figure 2.4.

This project will deal with extinction by subtracting the continuum from the spectra. Contin-

uum removal places more emphasis on the spectral features instead of the colour information

which changes due to interstellar dust.
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FIGURE 2.4: A plot of the extinction against inverse wavelength. The mount of
extinction increases with decreasing wavelength.

Sky lines

Given that the AAT is a ground-based telescope, it is subject to the emission and absorption

lines caused by particles in the Earth’s atmosphere. The AAT will generally limit this effect by

observing the night sky with and without the target, so that the night sky can be subtracted

from the target spectrum. This process can sometimes be imperfect, however, due to spectro-

graph errors, optical distortions, and variability in the sky’s emission and absorption spectrum

[17].

Noise

For any measurement tool, there will always be an unavoidable level of random statistical

noise mixed in with the signal. This can be caused by thermal noise, electronic noise from

surrounding circuitry, dark noise (which is not normally an issue for Charge-Coupled Devices

(CCDs)), or shot noise from the target source or the atmosphere [8]. While several precautions
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are taken by the OzDES astronomers at the AAT to reduce the noise level, it is not possible to

remove all of the noise.

The amount of target signal compared to the level of noise (S/N ratio) will vary for each target

from the AAT. While it will obviously be easier to classify targets with a high S/N ratio, several

targets with a low S/N may not be able to be classified. This project will have to evaluate

the types of sources that cannot be classified, and determine whether there are similarities in

the types of these sources. If there are similarities, such as a particular type of host galaxy or

supernovae being classified less reliably, then this will add a bias to final supernova dataset

and will need to be considered.

2.2.4 Equipment Miscalibration

The AAOmega spectrograph used on the AAT features both a red and a blue arm in its spec-

trograph before the light reaches the CCDs [2]. Since CCDs vary in their sensitivity to different

wavelength ranges of light, the spectral arms with different CCDs are occasionally miscali-

brated. A miscalibration in the two arms is often observed as a dichroic jump in the spectrum

which can easily be mistaken for an emission line. This dichroic jump will occur at the bound-

ary of the red and blue arms which is usually at approximately 5800Å. An example of this

dichroic jump is illustrated in Figure 2.5.

2.3 OzDES

The Australian Dark Energy Survey (OzDES) is a five-year 100-night spectroscopic survey on

the Anglo-Australian Telescope, whose primary aim is to follow up objects selected by the in-

ternational Dark Energy Survey collaboration (DES). One of the four key science areas of DES is

the supernova survey, where OzDES plays a key role in measuring the redshifts and luminosi-

ties of approximately 2500 Type-Ia Supernovae host galaxies [45]. Type-Ia supernovae (SNIa)

play a particular importance in measuring cosmic expansion because they act as standard can-

dles that can provide accurate distance scales in the universe (see section 2.1.2). The overall
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FIGURE 2.5: Example of a dichroic jump visible at 5800 Å. This caused by mis-
calibrated CCDs and can be misinterpreted as a spectral feature. The graph has

been taken from MARZ [15].

goal of the survey is to increase the current supernovae dataset, in order to understand the na-

ture of dark energy and ultimately to rule out existing theories of cosmic acceleration including

modified gravity theories, and theories involving Einstein’s cosmological constant.

The spectral targets have been selected by the Dark Energy Survey (DES). However, not all of

these targets are necessarily SNIa host galaxies, and may include other types of Supernovae

or other Transient Astronomical Objects. This project aims to classify the type of objects being

observed, as well as to provide specific classifications on the redshift, age, and host galaxies

being observed.

2.3.1 Anglo-Australian Telescope

The survey is being conducted on the 3.9m Anglo-Australian Telescope (AAT). This telescope

has recently been upgraded to make use of a unique Two Degree Field (2dF) facility that is

able to use 400 individual optical fibres to collect the light from up to 400 stars or galaxies from

a two degree field of view [3]. The light from each of the optical fibres is then directed to a

spectrograph, where it can be separated into its constituent wavelengths before being detected

by a CCD for analysis. OzDES makes use of this unique new technology to observe thousands
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of objects over 100 nights. Each object has a unique spectrum consisting of a measured light

intensity at each wavelength, that the software in this project will analyse.
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Chapter 3

Prior Methods

3.1 Current OzDES Approach

Currently, the process of classifying supernovae is very slow, and labour-intensive, with the

classification process for a single supernova taking up to a few hours. Due to the fact that thou-

sands of supernovae will be need to be classified by OzDES, this process must be automated.

Because most supernovae are intermixed with their host galaxy, programs like SNID (see sec-

tion 3.2) are not suitable. The main program used by astronomers for supernova classification

is Superfit. This program takes several minutes per supernova, often has several difficulties

when separating the host galaxy spectra, and is only accurate after a few different runs of the

software that involve an experienced astronomer having to add in prior information about the

object. This process involves a lot of constant human involvement, and the goal of this project

is to limit that current requirement.

3.2 Prior Software

There are several different redshifting tools used for the classification of non-supernova objects,

and only a few tools used for supernova spectral classification. This section will review the

main software packages used by large cosmology surveys.
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3.2.1 SNID

SNID is a very fast typing tool written in Fortran that is used to classify supernova spectra. It

is based on the algorithms developed by [43]. While the speed of classification is very high,

it is only accurate for pure supernova spectra and is not able to accurately classify spectra

that are intermixed with their host galaxy, or spectra with a low S/N ratios. In the astronomy

community SNID’s primary purpose has been to distinguish between type-Ia and type-Ib/c

supernovae. To do this, it uses a method of cross-correlation and pre-processing similar to that

outlined in section 7.1 to determine the redshift, and compare the input spectrum with a set of

template spectra.

It formulates a parameter called ’rlap’, which gives an indication of how well an input spectrum

matches a particular template spectrum [7]. The value is computed using the cross-correlation

peaks, as well as the overlap of an input and template spectrum.

3.2.2 MARZ

MARZ is a very user friendly redshifting tool written in Javascript that has recently become

widely accepted by the OzDES community. It surpasses previous redshifting tools such as

RUNZ and AUTOZ due to its speed, web-based user friendly platform, and accuracy [15].

The software uses a modified version of the AUTOZ [4] cross-correlation algorithm to match

input spectra against a variety of stellar and galaxy templates. Like SNID and AUTOZ, MARZ

preprocesses its spectra using a similar method to that outlined in section 7.1. Because of its

high accuracy and speed, DASH will make use of the redshifts determined by MARZ as a prior

input for supernova classification.

3.2.3 AUTOZ

AUTOZ is a redshifting tool written in IDL that was previously used by the astronomy commu-

nity [4]. It uses a very similar preprocessing and cross-correlation matching algorithm to that

outlined in section 7.1. As the MARZ software analysed and improved upon the techniques
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used by AUTOZ, this project will primarily focus on the redshifiting techniques employed by

MARZ.

3.2.4 Superfit

Superfit is a supernova classifying tool written by Andy Howell in IDL that is currently the

main software used by a large part of the astronomy community [16]. Unlike the previous

three software tools, Superfit makes use of a chi-squared minimisation approach to classifying

spectra. Its advantage over SNID, and other tools is that it can subtract the spectra of host

galaxies (selecting from eleven templates), and therefore deal with combined supernova and

galaxy input spectra. As outlined in section 3.1, Superfit is limited by the amount of time it

takes, and the amount of continuous user involvement that is required. The other downfall of

superfit is that it can only classify into the four broad types, and cannot classify a spectrum into

its subtype. Moreover, due to its very small set of supernova templates, it is not able to give

accurate age estimates either.

3.2.5 Summary of Previous Tools

All of the prior software makes use of template matching techniques that involve either cross-

correlation or chi-squared minimisations to ascertain a best matching template. However, us-

ing this approach means that the total computation time increases linearly with the number of

templates. While cross-correlations are relatively fast, chi-squared minimisations are slow, and

are the reason for the small number of templates available in Superfit.

Both SNID and Superfit’s reliance on their template set mean that they cannot accurately gauge

the specific subtype and age of an input spectrum. This is because instead of using the aggre-

gate feature of a particular class of supernova, they can only compare with one template at a

time. DASH significantly changes this framework by classifying based on features instead of

templates.
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Chapter 4

Requirements and Tool Decisions

After consultation with several members of the OzDES collaboration, a set of usability and

functional requirements were developed. These requirements were shaped such that if they

were met, DASH would be considered a viable and welcomed replacement to current tools.

This chapter details these requirements, and also outlines some key tools used and decisions

made.

4.1 Speed and Accuracy

The AAT is observing an unprecedented number of transient objects that need to be classified.

Existing tools are either too slow and require a lot of human involvement (Superfit), or are

inaccurate for low signal-to-noise or galaxy-contaminated spectra (SNID). As such, one of the

key outcomes of my project is that it needs to minimise the human-involvement by being fast

and as autonomous as possible. At the same time, it must also match or improve upon the

accuracy of current tools.
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4.2 Installation and Updating

One of the biggest issues with many astronomy tools is the difficulty in the initial installation

of the software package. In particular, tools such as RUNZ and Superfit are notoriously diffi-

cult to get started with, often requiring the laborious and non-user-friendly tasks of installing

several dependencies and setting system paths. As such, in order to enable widespread uptake

of my software, OzDES requires that the installation process be simple and user-friendly. Ide-

ally, installation should be possible with a nearly self-contained installation package with all

dependencies either being installed automatically or with minimal difficulty.

Furthermore, the maintenance of the software should not require much effort from the end-

user. Updates should occur automatically or with very basic and easy to follow instructions.

In addition, OzDES expects that the user will not need to manually update any dependencies

or to reconfigure any files or content.

4.3 Operating System

While being cross-platform is not a strict requirement for the OzDES team, most previous ap-

plications require a Mac or Linux Distribution. Moreover, most members of the astronomy

community have requested that the software be easily available on the Mac operating system.

As discussed in Chapter 7, while DASH has been developed to be cross-platform, one of the

main dependencies is currently only available on Mac and Linux. As such, at this stage, DASH

has been optimised to run on both Mac and Linux distributions, with untested support on the

Windows OS. However, as most astronomy applications are only suited to the Mac OS, there is

no current need to be operable on other operating systems.
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4.4 Online vs Offline

A recent tool developed by Sam Hinton, MARZ [15], is the first redshifting tool to run com-

pletely on an online interface. To do this, it was written nearly exclusively in JavaScript and

HTML, and does not require a large server to host and relay data. Instead, it operates exclu-

sively within the browser. Running completely online has eliminated the previous installation

and cross-platform issues that surrounded previous software. Due to MARZ’s effectiveness

and the fact that no installation is required, it has widely overtaken previous software, such as

RUNZ, as the primary redshifting tool.

However, MARZ is a very lightweight tool that requires minimal computational effort: making

use of only 11 different templates instead of the over 4000 used in this project. MARZ works

purely as a redshifting tool rather than a classification tool, and therefore does not require as

much computational effort. Thus, in order to enable DASH to be online, a dedicated server

would need to be setup to act as a host that processes the large amounts of data.

To make this decision about the front-end interface, a qualitative poll from the future users of

this software from the OzDES collaboration was conducted 1. The key advantages and disad-

vantages of each approach are illustrated in the table below.

Online Interface Offline Interface

Installation None Required

Internet access Required Not needed

Integration Not easy Possible

Functionality Fixed More options

TABLE 4.1: Comparison of an online interface vs an offline interface on four dif-
ferent criteria. Online interfaces do not require an installation, however, they
require an internet connection, cannot easily be integrated into projects, and their

functionality is limited to a graphical interface.

1The astronomers who provided feedback on this decision have been acknowledged in the Acknowledgements
section at the beginning of this report
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As illustrated in Table 4.1, the main advantage of an online interface over an offline one is

that there is no installation required. However, one of the main comments from many mem-

bers of the OzDES collaboration were that classification of supernovae often occur at locations

where internet access is very limited. Anecdotally, supernova classification can often occur

at telescopes where internet access can be very poor, and also at airports and airplanes as as-

tronomers travel. For this reason, the main sentiment was that provided that installation is

relatively easy, an offline interface is definitely preferred.

What’s more, an offline tool also has the advantage of more easily enabling library functions

that can be integrated into the classification pipeline, or into the work of scientists without

requiring human inspection. The ability to have a customisable functionality, which is more

readily available on an offline importable package is also an additional benefit.

Ultimately, an offline tool is widely preferred, provided that it is easily installable, and is also

easier to implement due to the difficulties in managing a dedicated server.

4.5 Language Decision

The main languages that I considered for this project were Python, C++, IDL, Fortran, Javascript,

and Java. However, one of the main guiding factors of this decision were to use a language that

is familiar to astronomers who would be using it. This is an important requirement not only

so that the software can be maintained by others in the future, but also so that it can be more

easily customised to suit their work.

According to a survey by [27], the most popular language used by the worldwide astronomical

community is Python, with IDL, C++, and Fortran coming next. This is illustrated in Figure

4.1.

While Javascript would have been useful for an online tool, this rules out Java and Javascript

which are used by less than 3% of the community. The figure highlights that Python is the

most popular, and is significantly more popular among graduate students and postdocs. This

suggests that Python usage is the fastest growing among astronomers.
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FIGURE 4.1: Ranking of the most used programming languages subdivided by
career stage [27]. Python is the most popular language, and appears to be even

more popular for the younger upcoming scientists.

Previous tools such as Superfit and SNID have been written in IDL and Fortran respectively.

While IDL and Fortran both have external library support, they are disadvantaged by their dif-

ficult readability in their syntax, and more importantly that they are both procedural languages

with scant GUI features. Moreover, IDL is not freely available and requires an annual cost to

install onto personal computers.

C++ is a low-level compiled language that is known for its high-speed execution. However,

one of its main disadvantages is that given its lower popularity in astronomy, there are much

fewer modern libraries available, and the libraries that do exist are often platform dependent.

On the other hand, Python is not only popular, but it is also available cross-platform, has highly

readable syntax, and has a vast range of external libraries. One of its disadvantages, however,

is that its speed does not rival that of faster low-level languages like C and C++. However,

some key scientific libraries including NumPy, and Tensorflow [1] (both used in this project)

are written with a C++ back-end that allows for the easy-programming of Python with the

efficiency and speed of C++. Overall, this all makes Python the clear choice for this project.
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4.6 Integration

For the purposes of the OzDES project, a standalone supernova classification tool is all that

is required. However, while this is not a strict requirement, some members of the OzDES

collaboration have mentioned that beyond OzDES, it would be useful to have a tool that can

be integrated into their code. This would involve being able to classify without needing to

look at a graphical interface, and instead using DASH as a python library function. One use

case would be to import the DASH package into a python script, and then call classification

functions to be run on some input data file. The advantage of this is that it enables users to

iteratively classify several spectra, and to use the results of the classification in their work. It

also allows for an automated classification that does not rely on visual human checks.

For this reason, DASH has been made available on the Python Package Index (PyPI) such that

it can be easily be easily installed with ’pip’. Users are then able to import DASH and use the

available library functions (see Chapter 7).

4.7 Libraries and Tools Used

4.7.1 Libraries

Numpy: This project makes heavy use of Numpy for the manipulation of the large arrays

used in the project. Numpy makes use of a C++ backend that enable it to provide very

fast matrix and array calculations.

Scipy: Scipy is a common statistics library that is used in this project for the spline fit contin-

uum removal (see section 7.1).

Specutils: This library is used primarily for reading a FITS files, a particularly common file

type in astronomy.

PyQt4: This is used primarily for it easy, efficient, and vast GUI libraries. The GUI as well as

the graphing tools were implemented using this library.
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Tensorflow [1]: This was heavily used in this project for its powerful machine learning libraries

that enable the development of multi-layer neural networks.

4.7.2 Software Tools

Git and GitHub

Git is an open-source and intelligent version control software used by several developers and

companies around the world. It has been used in this project to both control the several files

that make up the project, and to easily share my code with my supervisors, and the members

of the OzDES community who have tested the project. I believe in open-sourcing my code, and

have used GitHub as a public repository. The code is available at https://github.com/

daniel-muthukrishna/SNClassifying_Pre-alpha.

Resources

Some of the main external resources used in this project include PyCharm and Obelix.

• I have used PyCharm as the main integrated development environment (IDE) to develop

my software and to upkeep a local git repository.

• I have also made use of the Obelix Supercomputer at the University of Queensland Physics

Department. This was used heavily in the training of the deep learning model, which

used 10 to 40 cores on the cluster and took several hours or days of computation.

https://github.com/daniel-muthukrishna/SNClassifying_Pre-alpha
https://github.com/daniel-muthukrishna/SNClassifying_Pre-alpha
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Chapter 5

Data Description

This chapter describes the types of data that were used to train the model, details how the data

was collected, and outlines the decisions made that led to the final dataset.

5.1 Data Collection

To analyse and classify supernova spectra, a large set of templates from a range of different

types of supernovae at varying ages were collected.

5.1.1 SNID Templates

SNID [7] makes use of 1515 spectral templates from 111 different supernovae that have been

observed by various astronomical surveys between the years 1979 to 2006. Each of the 111

supernovae were observed on several different days (or ages) which is how we get 1515 tem-

plates. Each of these templates have been de-redshifted back to redshift zero so that they can

all be equivalently compared.

SNID uses the Supernova subtypes defined by John Tonry and Marc Davis [43]. There are 14

different subtypes they classify into. These are listed here:

Ia-norm, Ia-91T, Ia-91bg, Ia-csm, Ia-pec, Ib-norm, IIb, Ib-pec, Ic-norm, Ic-broad, IIP,

IIL, IIn, II-pec.
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SNID processes all their templates in the same way, whereby they smooth the spectra with a

low pass filter, remove the continuum with a spline fit, bin the spectra into 1024 points and

apodize the edges. This template processing method is outlined in section 7.1.

Templates-2.0

In 2012, the number of SNID templates was significantly increased [6] to consist of 3754 spec-

tra across 349 different supernovae. This new set added several more supernovae that were

obtained between 1993 to 2008 though the Center for Astrophysics Supernova Program. How-

ever, several of the templates did not have the correct age information. The templates without

age information were not made clear in [6], but the ages in the files were all set to -99 days to

represent that the age was unknown. These templates were iteratively deleted from the tem-

plate set used for training in this project by writing a short script to find and delete files where

the ages were set to -99 days.

5.1.2 Superfit

Superfit [16] makes use of a total of 306 spectral templates, which is much less than the number

used in SNID. The main reason for the lower number of templates used is that the chi-squared

matching process employed by Superfit is significantly slower than the cross-correlation method

used by SNID. The computational matching time of both methods increases linearly with the

number of templates used [7].

The main problem with the templates used by Superfit is that they only distinguish the Su-

pernova types into the four main types (Ia, Ib, Ic, II), and do not separate them into subtypes.

This makes them incompatible for use with SNID templates. Additionally, all of the supernova

templates used in Superfit are also used in the original SNID templates or the Modjaz and Liu

[25, 22] templates outlined in the following sections.
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5.1.3 Increased SNID Templates

Liu & Modjaz

In 2014-2016, Yuqian Liu and Maryam Modjaz released a few papers [25, 24, 22, 21] that up-

dated the Templates-2.0 set from SNID to correct several of the Ib/c templates which had the

incorrect subtype or age information. In addition, they introduced two new subtypes called Ib-

n and Ic-pec to account for variations in particular features of the spectra. Finally, they added

70 new supernovae to the template set. All of these updated templates including the original

SNID templates are available on a GitHub 1 repository that released while this thesis was being

written.

BSNIP

In 2012 Jeffrey Silverman et al. [38] added 4015 new spectra from approximately 350 different

supernovae as part of the Berkeley SN Ia Program (BSNIP). Many of these were, however, also

part of the SNID templates from Blondin, Liu and Modjaz. The BSNIP release also created

two new subtypes called Ia-02cx and Ia-99aa. The BSNIP v7.0 templates were used in this

thesis and were downloaded from the following link https://people.lam.fr/blondin.

stephane/software/snid/faq.html#bsnip_v7.

During this thesis, I emailed Jeffrey Silverman about what supernova types he thought were

important to include in my new software. He stated that although he formed a new subtype

Ia-99aa in his 2012 paper [38], he believed that Ia-99aa could be a subset of Ia-91T, and may

not need its own category. Based on this information, and the fact that there were not enough

Ia-99aa templates to form its own subtype, I made the decision to let all Ia-99aa’s fall under the

Ia-91T subtype.

1 GitHub repository with updated SNID templates are available here: https://github.com/nyusngroup/
SESNtemple/tree/master/SNIDtemplates

https://people.lam.fr/blondin.stephane/software/snid/faq.html#bsnip_v7
https://people.lam.fr/blondin.stephane/software/snid/faq.html#bsnip_v7
https://github.com/nyusngroup/SESNtemple/tree/master/SNIDtemplates
https://github.com/nyusngroup/SESNtemple/tree/master/SNIDtemplates
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5.1.4 WISeREP

WISeREP [44] is an online database of supernovae. It consists of 13381 different spectra, nearly

encompassing all the supernovae that have ever been observed. I contacted the author of the

repository, Ofer Yaron, and he provided me with all of the spectra broken down into 29 different

supernova subtypes. These are listed in the table below.

Subtype Quantity

SLSN-I 147

SLSN-II 75

SLSN-R 9

SN 63

I 20

I-faint 15

I-rapid 7

Ia 7823

Ia-02cx 69

Ia-91bg 97

Subtype Quantity

Ia-91T 134

Ia-pec 241

Ia-SC 87

Ib 421

Ib-Ca-rich 13

Ib-pec 11

Ib/c 210

Ibn 172

Ic 656

Ic-BL 115

Subtype Quantity

Ic-pec 34

II 730

II-pec 64

IIb 577

IIL 68

IIn 856

IIn-pec 52

IIP 586

SN imposter 29

TABLE 5.1: A break down of the quantity of each subtype of supernova available
in the WISeREP repository as provided by Ofer Yaron.

WISeREP clearly provides a large range of data, while introducing a lot of new subtypes. There

is a significant amount of bias in the dataset, whereby over half of all templates are Type Ia

supernovae. This is due to the usual preference of observing SNIa’s due to their scientific

use. Adding this many templates would be very useful for training a machine learning model.

However, the problem with this database is that the ages of the supernova spectra are not

provided. In fact, the only way to find them would be to individually trace the observation

dates and the assumed dates of maximum light for each supernova from some external papers

and databases. However, after spending sometime searching for the ages of these supernovae,

I determined that there is no easy way to find the ages. The reason for this is that either the

date of maximum light is not known by astronomers, or the date of maximum light is only
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given individually in the paper that discovered the particular supernova. Given that there are

thousands of spectra, finding the age of each supernova is obviously not a task that can feasibly

be completed in this thesis.

5.2 Deleting Templates

5.2.1 Unknown Ages

Many of the collected SNID templates listed in the previous section had unknown ages. Since

age is an important characteristic for training in my model, I iteratively deleted any of the

supernova spectra in my template set that had an unknown age.

5.2.2 Ic-broad bias

After testing my software, I found that there was a bias towards the Ic-broad subtype. Upon

further investigation, I found that many of the templates that were marked as Ic-broad had a

low signal-to-noise ratio and did not appear to match the majority of other Ic-broad spectra.

As such, seven of the Ic-broad supernovae were deleted. These include:

• 2010ma

• 2010bh

• PTF10qts

• 2013cq

• 2013cq

• 2003dh

• 2013dX

• 2012bz
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I have listed these here because my claim that they are not Ic-broad’s could be significant to

some astronomers who are interested in this subtype. As such, I believe that some further

investigation into the above listed supernovae may be needed to clarify their type.

5.3 Need for more templates

The data that is used in DASH from Modjaz, Liu, Silverman, and Blondin as outlined in the pre-

vious sections have proven to be sufficient for effective classification (see Chapter 9). However,

it is expected that if a wider and deeper range of templates is added to the training set, the ac-

curacy of the model will improve. Perhaps in the future, the data from WISeREP or some other

database with ages may be collated to increase the current dataset, and improve the machine

learning model.

5.3.1 Bias in all Supernova Classification Tools

One of the main flaws in DASH, and all supernova classification tools including Superfit and

SNID is that there are several gaps in the types of templates that have been recorded. As seen

in Table 5.3, there are a lot of supernova types where we don’t have any templates at many of

their ages. This flaw is mainly due to the lack of interest by observational cosmologists who

observe non Type-Ia supernova only once, and do not go ahead and collect more data for more

ages of the supernovae.

5.4 Templates Description

The templates used in this thesis are the same as the updated SNID templates outlined in the

above sections. Overall this gives a total of 3936 spectra across 515 different supernovae. In

order to be consistent with current work, and to ensure that the work that has gone into im-

proving the SNID template list is not lost if DASH begins to be adopted by the astronomical
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community, I have chosen to use the same template processing format as SNID. As such, tem-

plates that are added for training in DASH should all be log-wavelength binned just as the

SNID templates (see section 7.1 for an outline of this processing method).

5.4.1 Types and Ages

The 3936 templates used for this thesis have been separated into 17 different subtypes. These

subtypes are listed below:

SNIa: Ia-norm, Ia-91T, Ia-91bg, Ia-02cx, Ia-csm, Ia-pec

SNIb: Ib-norm, Ibn, IIb, Ib-pec

SNIc: Ic-norm, Ic-broad, Ic-pec

SNII: IIP, IIL, IIn, II-pec

Within each of these subtypes, there are a range of different possible ages. In general, su-

pernovae are only bright enough to be noticed 20 days prior to the date of maximum light.

Similarly, most supernovae are no longer of interest after around 50 days after their date of

maximum light. While some supernovae are observed up to 100 days past their maximum,

these are usually very dim, and the spectra are mostly dominated by their host galaxy light.

For this reason, in this project we are only considering ages between the range of -20 days to

+50 days, where the date of maximum light is defined as an age of 0 days.

In order to group the spectra into bins that can be trained on for the machine learning algo-

rithm, I have chosen to split up the ages into 4 day intervals. As such for each supernova

subtype, there are 18 age bins. These age bins are listed below:

Combining the number of subtypes and the number of ages means that we have a total of

17× 18 = 306 different bins to separate all of the templates.
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A: -20 to -18 days

B: -18 to -14 days

D: -14 to -10 days

E: -10 to -6 days

F: -6 to -2 days

G: -2 to 2 days

H: 2 to 6 days

I: 6 to 10 days

J: 10 to 14 days

K: 14 to 18 days

L: 18 to 22 days

M: 22 to 26 days

N: 26 to 30 days

O: 30 to 34 days

P: 34 to 38 days

Q: 38 to 42 days

R: 42 to 46 days

S: 46 to 50 days

TABLE 5.2: List of the 18 age bins that each of the supernova subtypes are sepa-
rated into. They have been labelled with letters from A to R. These labels corre-

spond to the headings in Table 5.3.

5.4.2 Number of Templates

The total number of templates that are available for each subtype and corresponding age is

illustrated in Table 5.3. The columns are labelled with letters from A to R. These correspond to

the age bin labels listed in Table 5.2.

From Table 5.3 we can see that there are significantly more Type-Ia supernova templates than

the rest. This is due to the bias in cosmological surveys which tend to observe more SNIa’s due

to their scientific significance. We can also note that there are obviously very few templates

in columns A and B since these represent ages between -20 to -14 days where supernovae are

often too feint to notice.

Moreover, there are several gaps (cells with 0), where we don’t have any templates. This means

that there is no way that we can ever classify into these groups. This is a problem with all

classification tools including SNID, Superfit, and DASH.

Accounting for SNIa Bias

The fact that there are a much higher number of Type Ia supernovae can lead to a bias in

the classification process if it is not properly accounted for. To eliminate this bias, each of the

templates in the 306 different bins were repeated in the training set, until each cell had the same

number of templates as the largest bin (Ia-norm at 2 to 6 days). This process is equivalent to

adding an extra weight to bins with a low template count.
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A B C D E F G H I J K L M N O P Q R

Ia-norm 0 2 54 179 231 274 286 229 191 158 121 96 91 79 52 60 54 29

Ia-91T 0 0 18 51 54 32 19 25 20 27 26 21 19 12 13 9 11 15

Ia-91bg 0 0 0 10 24 25 39 23 24 17 21 10 10 13 2 2 6 5

Ia-csm 0 0 2 0 0 2 2 4 2 2 0 0 2 2 0 6 4 2

Ia-02cx 0 0 0 8 11 2 1 0 2 3 3 5 2 0 1 1 2 0

Ia-pec 0 0 5 15 18 20 13 17 10 9 8 12 8 8 7 7 4 1

Ib-norm 1 4 8 13 18 17 8 10 15 11 7 4 4 4 5 5 2 6

Ibn 0 0 0 0 0 0 3 6 3 2 3 1 1 3 1 1 2 1

IIb 4 12 15 7 13 6 13 12 15 11 8 5 3 4 7 6 3 2

Ib-pec 0 0 2 1 2 0 0 0 1 4 1 0 0 0 0 0 1 0

Ic-norm 0 1 1 11 18 18 15 9 7 12 9 12 5 10 3 4 3 8

Ic-broad 0 1 7 6 21 16 18 17 13 10 13 10 13 6 5 3 3 11

Ic-pec 0 0 0 0 3 9 7 0 1 0 4 3 0 2 0 0 0 2

IIP 0 0 0 1 12 30 23 22 12 10 4 11 10 5 13 5 5 3

IIL 0 0 0 0 0 0 0 3 4 0 0 0 0 0 0 1 2 0

IIn 0 0 4 0 0 8 2 4 6 2 0 0 0 6 0 4 6 2

II-pec 1 3 2 3 3 1 2 2 0 0 0 0 0 0 0 0 0 0

TABLE 5.3: The number of templates for each subtype (rows) and each corresponding age
(columns) are listed in the table. The letters A to R correspond to the age bin labels from Table 5.2.

5.5 Plot of Templates

One template from each subtype of supernova observed at maximum brightness (-2 to 2 days)

is plotted in Figure 5.1. However, as illustrated in Table 5.3, a few of the subtypes do not have

any templates in this age bin. These templates which are also not included in the figure are

Ib-pec, IIL and Ibn. The templates that have been plotted are a representative sample of the

other datasets, and the particular supernova plotted was chosen at random.

These plots represent the spectra after they have been processed onto a 1024-point log-wavelength

scale, continuum-subtracted, and cosine-tapered edges as outlined in the section 7.1. We can
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see that many of the broad types share similar characteristics. While it may be useful to show

the spectra of each of these subtypes at a range of different ages, this would take too much

space in this report given that there are 306 different bins. Instead, Figure 5.2 plots the subtype

Ia-norm at 17 different age bins from -18 days to 50 days.

From Figure 5.2, we can see that all Ia-norm’s share very similar features. The only differ-

ence with age is that some of the features broaden or become relatively smaller or larger with

changes in the age.

Figures 5.1 and 5.2 give an illustration of the variation in the data that the machine learning

model must train on. Each of the spectra have been recorded at varying wavelength ranges

due to the spectrograph restrictions at the telescope that observed the supernovae. This is

illustrated on the figures by the spectra starting at different wavelengths. It should also be

noted that all of the plotted spectra have been pre-processed, smoothed and de-redshifted to

zero. Input data, on the other hand, is expected to have a much lower signal-to-noise, have

a non-zero redshift, and be partially contaminated with host galaxy light. An example of an

un-processed input spectrum is illustrated in Figure 7.1.

5.6 File Types

DASH has been customised to accept several different file types that contain supernova data.

These are listed in the following subsections.

5.6.1 lnw File

The data templates from SNID are in a file type defined in [7] with a .lnw extension. These files

include a lot of information about a single supernova. The header consists of information about

the supernova and information about the spline fit that has been divided from the spectrum.

The first line is made of tab separated information that in order detail the following:
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• Number of spectra in the file. These spectra correspond to the the number of ages that

have been recorded for the particular supernova.

• Number of points that the spectra has been binned into (All are set to 1024 points).

• Minimum wavelength. All templates have been set to 2500 Angstroms.

• Maximum wavelength. All templates have been set to 10000 Angstroms.

• The maximum number of spline points used to fit the continuum of all the spectra in the

file.

• The name of the template (e.g. SN2002ap).

• dta: Usually set to -9.99, but the significance of this is unknown and appears to be irrele-

vant.

• Template subtype (e.g. Ic-norm).

• Index of type (irrelevant for use in DASH).

• Index of subtype (irrelevant for use in DASH).

There are then a number of indented lines which give information about the continuum that has

been divided from the spectra. This information gives the points used to model the continuum

with a spline fit.

The next line gives several tab separated values indicating the ages of the spectral information

in the columns below. Following this, there are several tab separated columns which give

information about the flux of the spectra. Each column has 1024 rows to represent the log-

wavelength binned and continuum divided spectra (see section 7.1). The first column gives

wavelengths from 2500 to 10000 Angstroms. The following columns give normalised fluxes

from 0 to 1 for each of the ages of the supernovae in the file.
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5.6.2 ASCII, data, Two-column Text Files

Most of the raw data from the AAT are uploaded as .DAT files which consists of a two column

tab separated file. The first column is the wavelength in Angstroms, and the second column is

the flux. Any two-column data file can be input into DASH for classification.

5.6.3 FITS File

A very common file type used in astronomy is a FITS file. This file can be customised to contain

a lot of header information about a particular astronomical object. For the purposes of DASH,

it is only important to extract the wavelength and flux from the files. Both the wavelength

and flux are identified by their names as keys in the file, and can be extracted using astropy’s

(python library) FITS file reader. I have made use of a python package called ’specutils’ which

enables easy reading of FITS files. (See the class ReadSpectrumFile in preprocessing.py on the

GitHub repository.)
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FIGURE 5.1: Plot of each of the different subtypes used in this project at an age
between -2 to 2 days (approximately maximum brightness). Note that Ib-pec,
IIL, and Ibn have not been plotted because they do not have any templates in this
age bin (see Table 5.3). The spectra have been preprocessed using the method

outlined in section 7.1.
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FIGURE 5.2: Plot of the Ia-norm subtype at 17 different ages from -18 to 50 days.
The spectra have been preprocessed using the method outlined in section 7.1.

7.1.
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Chapter 6

Initial Design and Major Decisions

6.1 Initial Design

At the start of this thesis I originally planned to approach the classification problem with a

cross-correlation template matching technique similar to that used by SNID, MARZ and many

other redshifting tools. This problem was thought to be too difficult for standard machine

learning approaches, and deep learning had never been used for spectral classification as far

as we knew, and was thus not considered as an option. I also had no familiarity with the topic,

so wasn’t able to determine whether machine learning could be a viable option. As such, we

turned to the existing software: Superfit and SNID, and aimed to improve upon them. In fact,

the original plan by the consulted members of OzDES was to make my software an extension

of Sam Hinton’s MARZ redshifting program. MARZ’s main advancement is its convenience of

being online, its very user-friendly appearance, and processing and cross-correlation accuracy

compared to previous redshifting tools. A supernova classification tool, however, is a much

more involved problem for the reason that there are so many more factors involved in super-

nova classification than redshifting. In particular, the sharp features in galaxy spectra make

redshifting a much more obvious process than the redshifting of supernovae. Furthermore,

the degeneracies in type, age, redshift and host contamination make supernova classification a

very complicated process.

The main advancements in my software over previous tools was aimed at improving the speed
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and to minimise human involvement in classification. The way we planned to achieve this was

to recreate Superfit’s ability to subtract galaxies and classify supernovae using a Python frame-

work instead of IDL. Speed improvements were thought possible by enabling more efficient

multi-core processing. We developed a flowchart illustrating the top-level design of how my

software would deal with the different possible cases of an input spectrum. This is illustrated

in Figure 6.1.

FIGURE 6.1: Process flow diagram indicating the possible outcomes of an input
spectrum into my software. This was developed as an initial design.

The flowchart illustrates how an input spectrum would be dealt with in my software. Initially,

we would try to determine the galaxy type and the redshift. This is essentially what MARZ

does at the moment, so it was not considered a top priority for my software. If the galaxy was

successfully determined (left branch) then it would be subtracted from the spectrum, and the

supernova would be attempted to be classified. Ideally, this would work, and the program

would finish, but we considered that three other possibility could occur. The first possibility

was that the supernova classification would fail because there was no supernova in the spec-

trum; second, some new undiscovered supernova was being input; third the flowchart could

move down the middle branch whereby the galaxy light was feint compared to the supernova

and thus it could be classified directly. Alternatively, the galaxy and supernova were combined

such that the galaxy could not easily be subtracted away. In this case, a set of templates which

had both galaxies and supernovae would be need to compare with the input.
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6.1.1 Host Galaxy Subtraction

The process explained in the previous section is similar to how superfit deals with classification.

The main difficulty with this approach is being able to subtract the galaxy light. This is a

difficult problem because it is not known how much galaxy light compared to supernova light

is in each wavelength bin of the spectum. We considered a way to estimate the galaxy light

proportion by estimating that the combined spectrum was made up of a linear combination of

the host galaxy (Host) and supernova (SN) as in the following equation:

Combined = α(SN) + β(Host) (6.1)

where α + β = 1 and α and β represent the percentage contribution of the Supernova and

Host galaxy spectra to the combined spectrum, respectively. In order to determine α and β

so that the host galaxy could be subtracted from the combined spectrum, we would vary the

α and β parameter space until we found a combination that matched closest to the combined

spectrum. The closest match would be defined by either the combination that maximised the

cross-correlation, or the combination that minimised the total chi-squared probability.

6.1.2 Initial Classification Method

For the first couple of months of my thesis I worked to recreate SNID and Superfit. In this time

I successfully recreated SNID in Python, and was broadly able to classify supernovae using

a cross-correlation and overlap maximising process (see section 3.2.1). However, the time it

took my program to classify a single supernova was approximately 80 seconds, compared to

SNID which was about 15 seconds. The main reason for the longer time was because of the

hundreds of files my python program had to iteratively open and read. Python is notoriously

slow at doing this, so I would have had to store the files in memory before classification begun

to improve this speed.
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The process I used to classify the spectra was as follows. I first processed the input spec-

trum using the method outlined in section 7.1. Next, the input spectrum was iteratively cross-

correlated with each of few thousand templates to determine the redshift and the best matching

templates. In order to simplify the computation time when calculating the cross correlation, the

convolution theorem was used:

s(λ) ∗ t(λ) =

∫ ∞
−∞

s(∆λ)t(λ−∆λ) (6.2)

= F [S(k)T (k)] (6.3)

where s(λ) and t(λ) are the input and template spectra respectively. λ is the wavelength, k

is the wave-number, F represents the Fourier Transform, and the capitalised S(k) and T (k)

represent the input and template spectra in Fourier space. Here, the cross-correlation can be

computed with Fourier transforms and multiplications rather than computationally expensive

integrals.

The cross-correlation was also multiplied by a low pass filter to remove high frequency noise,

and hence improve the signal-to-noise ratio.

6.2 Changing Classification Method

Ultimately, my initial method was successful at classifying supernovae, provided that there

was a reasonably high signal-to-noise, and that there was minimal host galaxy contamination.

This was an okay result, but I had not at all improved on previous methods. As such, my next

goal was to recreate Superfit so that I could deal with host galaxy light being intermixed in the

signal. Superfit makes use of a chi-squared minimisation approach, but also has to iteratively

compare the input with several templates.

At this point, I also had the novel idea of using a machine learning approach to solve the

problem. One of the main advantages of machine learning was that the computation time

did not increase linearly with the number of templates, and it had the potential to be much
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faster. I considered both supervised and unsupervised learning techniques, but upon research,

Deep Learning appeared to be solving a whole new range of Big Data problems. In particular,

it has had a huge amount of success in image classification problems, and I thought that this

supernova classification problem could be re-defined as a one-dimensional image classification

problem. The table below provides a comparison of the different classification methods I was

considering.

Deep Learning Cross-correlation
matching

Chi-squared matching

Classification
technique

Matches based on the
combined ’features’ of
all templates

Iteratively compares to
templates

Iteratively compares to
templates

Speed Very Fast (no change in
speed with templates)

Fast (but increases lin-
early with number of
templates)

Slow (increases linearly
with number of tem-
plates)

Noise Can train with noise Cannot classify low
S/N

OK with low S/N

Redshifting Redshifting is unreli-
able

Very good at redshift-
ing

OK redshifting

Goodness of
Fit

Relative Absolute Absolute

TABLE 6.1: A comparison of three different approaches to classifying supernova
spectra.

Deep Learning has several advantages compared to the cross-correlation matching used by

SNID and many other tools, and the chi-squared matching approach used by Superfit. In par-

ticular, Deep Learning uses a very different classification technique. While the other two statis-

tical methods have to iteratively compare an input to a large set of templates, Deep Learning

does not need to. It’s biggest advantage is that the training process is separate to the testing

process. Once a model has been trained with as many templates as possible, the matching is

based on the output model, and does not require the original templates at all. As such, it has

the possibility of being significantly faster, because the number of templates does not affect the

speed like it does for the other methods. In addition to this, as with many image classification

programs, deep learning can be trained to recognise a signal from a lot of background noise.
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One of the main disadvantages, however, are that cross-correlations are extremely effective at

redshifting, whereas deep learning is often position-invariant. This position invariance means

that the classification can often find a sub-image no matter where it appears in the larger out-

line. The other disadvantage, is that unlike the statistical methods of cross-correlation and

chi-squared matching which can give an absolute measurement of how good the classification

is, deep learning can only give a relative measurement of the goodness of fit by comparing to

the other possible fits. This is discussed further in Chapter 9.

Overall, deep learning is new, has never been tried before in this field, has had enormous

success in other fields, and appears to be the only way that my software has the potential to be

significantly better than alternative methods.

6.3 Deep Learning

6.3.1 Overview

Deep learning is a branch of machine learning that has recently gained a lot of popularity for its

success in a range of different applications including image, speech, and language recognition.

Advancements in computers have enabled neural networks to solve these more complicated

problems in reasonable amounts of time.

Figure 6.2 illustrates a visual representation of a deep neural network. Each layer is in the

form of a set of nodes or neurons that represent the data. For example, in this thesis, the input

layer is made of 1024 neurons representing the fluxes of an input spectrum. Additional layers

of neurons on the right of the input signal are built to ensure that each new layer captures

a more abstract representation of the original input layer. Each new hidden layer identifies

new features by forming linear and non-linear combinations of the of the previous layer [14].

For example, the hidden layers in the spectral classification in this thesis represent abstract

constructions of the input flux. The final output layer will then simply represent 306 different

neurons corresponding to the 306 different classification bins of supernova types and ages.
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FIGURE 6.2: A representative diagram illustrating the layers of a deep neural
network.

6.3.2 Machine Learning in Astronomy

Several successful attempts at machine learning in astronomy have been made [5, 23, 26]. In

particular, they have even been applied to supernova classification [23, 26], but have only been

successful for photometric data. Spectral classification, on the other hand, is viewed as a prob-

lem that is too difficult for standard machine learning algorithms. For photometric classifica-

tion, the approaches have primarily used supervised algorithms such as Random Forest and

Boosted Decision Trees. Deep neural networks have seldom been applied. However, due to

the relatively recent advancements in computers, spectral classification is finally a problem

that may be solvable by neural networks.

As such this project is very novel in its decision to use deep learning for spectral classification.

However, while this thesis was being written, a recent paper by Sasdelli et al. [35] has applied

deep learning to supernova spectra. This work has not been applied to supernova classification,

but has instead aimed to explore spectroscopic diversity in particular Type-Ia supernovae.

Moreover, a recent Masters thesis by [13] has applied deep learning for the spectral classifi-

cation of quasars, stars and galaxies. This is a very similar problem to the one in this thesis,

and I have thus made use of the lessons learned in this work. This being said, supernovae

are inherently more complicated than quasars and many other astronomical objects because of
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the fact that they vary with age, and thus have many degeneracies with their type, age and

redshift. Moreover, they have the additional problem of being distorted by the light from their

host galaxy.

Nonetheless, by combining the techniques and lesson learned by both [35] and [13], I have been

able to create a successful Supernova classification tool.

6.3.3 Tensorflow

A few different machine learning libraries exist for Python. These include Theano, Caffe,

Lasagne, Keras, Tensorflow, and many others. Tensorflow is the newest neural network library

having been released within the last year. It has received widespread praise for its high-level

library that avoids low-level details. It allows a programmer to focus on designing the neural

network, enables a flexible architecture, has a very fast performance - making use of a C++

backend, and was developed for use in Google products. As such, while many alternatives ex-

ist, I have made use of Tensorflow to build the neural networks in this thesis primarily because

I was keen to be one of the first programmers involved in the latest deep learning hype.

Using Tensorflow has proven to be a very good decision, as it has been able to classify super-

nova spectra with unprecedented speed, and very good reliability (see Chapter 9).

Tensorflow relies on a highly efficient C++ backend to do its computation [1]. The connection to

the backend is called a session. I have made use of a two layer neural network with a Softmax

regression model. The exact methodology is explained further in section 7.3.
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Chapter 7

Implementation

This chapter details how the final project has been implemented. The project consists of over

23 python files and several thousands of lines of code which cannot be completely explained.

Instead this section provides a detailed overview of how the project has been carried out. It

begins by outlining the processing techniques used to prepare the spectral data files, and then

explains how the data was prepared for the machine learning. The development of the neural

network is then detailed before the training and testing method is explained. Finally, the design

of the graphical user interface and the created python library is described.

7.1 Processing Method

SNID, MARZ, and AUTOZ all pre-process their spectra in a similar way before they are ready

for cross-correlation and matching to the templates. There are several steps to the processing

algorithm used. These consist of the following:

1. Low pass median filtering.

2. Normalising and De-redshifting.

3. Log-wavelength binning.

4. Continuum modelling with spline interpolation.

5. Continuum subtraction.
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6. Cosine tapering edges.

Once the data has been read from the .DAT or FITS file, the above method is used for process-

ing so that the input spectrum can be matched to the template data. A real OzDES data file

observed at the AAT on 16-September-2016 named DES16C2ma is used as an example for the

purpose of illustrating this algorithm. The following subsections detail the process.

7.1.1 Filtering

The first step of the processing algorithm involves low-pass filtering the data to remove the

high-frequency noise. Three possible methods were considered to apply the low-pass filter:

1. Blackman Window function

2. Moving-average filter

3. Low-pass median filter

The first method involves first Fourier-transforming the data before multiplying it by a window

function with a defined cut-off frequency. The second method involves averaging every n-

points along the input vector. The final method is similar, but involves taking the median of

every n-points. While the first method is very effective, it is a little computationally expensive,

so it was thought of as a last-resort if one of the other two methods were not possible.

One of the main differences between a median filter and an averaging filter is how they deal

with very high frequency points that appears as sharp spikes in the spectra. An averaging filter

will take the mean, and will thus be affected by a large spike. On the other hand, a median

filter ignores sharp spikes by taking the median of n-points in the vector. this makes a low-pass

median filter the obvious choice. A plot of the DES16C2ma raw data spectra and the filtered

signal are illustrated in Figure 7.1.
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FIGURE 7.1: A plot of an example supernova spectrum from OzDES, DES16C2ma
observed on 16 September 2016. The blue line shows the raw data spectrum,
while the red line shows the result after a low-pass median filter has been applied.
Note that the units of flux are not important, but only the relative contributions

of each feature.

7.1.2 Normalising and De-redshifting

The next stage involves de-redshifting the spectrum. This is an optional stage depending on

whether the redshift agnostic or zero-redshift model is used (see section 7.4). The data is de-

redshifted to account for how much the light was stretched due to the universe’s expansion. In

order to de-redshift the spectrum the following equation was applied:

λemitted =
λobserved
z + 1

. (7.1)

My software deals with redshift by either iteratively adjusting the redshift estimate, or by en-

abling the user to input a redshift. For the purposes of this explanation, the redshift was deter-

mined by using MARZ on the spectrum, and was determined to be z = 0.24.

After de-redshifting, the spectrum is normalised so that the flux is vertically shifted up to the

positive range, and then divided by the maximum flux range so that the normalised flux is
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between 0 and 1. This normalisation was achieved using the following equation,

fluxnormalised =
flux− fluxmin

fluxmax − fluxmax
. (7.2)

The filtered data from the previous subsection is plotted along with the de-redshifted and nor-

malised spectrum in Figure 7.2.

FIGURE 7.2: A plot of the filtered data (DES16C2ma) from Figure 7.1 shown in
red. The spectrum has then been de-redshifted and normalised and is shown in

blue.

7.1.3 Log-wavelength Binning

The spectrum is then binned onto a log-wavelength scale with a fixed number of points (bins)

within 2500 to 10000 Angstroms. This step is important for a few reasons. Firstly, ensuring that

each spectrum is a vector of exactly the same length within the same wavelength range makes

comparison much easier. Secondly, the primary reason for the log-wavelength scale is so that it

is consistent with the SNID templates. Moreover, it also makes redshifting less computationally

intensive since multiplying the signal by the redshift (1 + z) is equivalent to adding a ln(1 + z)

shift to the logarithmic wavelength axis [7]. The binning process used in this project follows

the method outlined in [7]; some of the key steps are shown here.
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First, the log-wavelength axis, llog,n, is defined as:

llog,n = l0 ln en×dllog , (7.3)

where l0 = 2500 is the minimum wavelength, l1 = 10000 is the maximum wavelength, N =

1024 is the number of bins, n runs from 0 to N and

dllog = ln(l1/l0)/N (7.4)

is the size of a logarithmic wavelength bin. The binned wavelength can then be translated from

the normal wavelength with the following relationship,

binnedwave = A ln llog,n +B (7.5)

where A = N/ ln(l1/l0) and B = −N ln l0/ ln(l1/l0).

Using this method, the input and template spectra were binned onto this scale. The binned

spectrum is illustrated as the blue line in Figure 7.3.

7.1.4 Continuum Modelling with Spline Interpolation

The next step in preparing the spectra involves subtracting the continuum. For galaxy spectra,

the continuum is well defined and is easily removed using a least-squares polynomial fit. In

supernova spectra, however, the apparent continuum is ill-defined due to the domination of

bound-bound transitions in the total opacity [32]. For this reason, a 13-point cubic spline inter-

polation is used to model continuum. The 13 points was thought to be sufficient to interpolate

the spectrum. From the 13 points, a cubic spline is then extrapolated such that the continuum

is modelled. This is illustrated as the green line on Figure 7.3.

This continuum is then subtracted from the spectrum (red line). This step removes any spectral

colour information (including flux miscalibrations), and enables the correlation to rely purely
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on the relative shape and strength of spectral features in the spectra. According to [7], the loss

of colour information has very little impact on the redshift and age determination.

FIGURE 7.3: A plot of the binned wavelength (blue), the modelled continuum
(green) and the continuum subtracted spectrum (red). These steps have been
applied to the same DES16C2ma spectrum that has been used in Figures 7.1 and

7.2.

7.1.5 Cosine tapering edges

While the discontinuities at each end of the spectrum are limited by the continuum subtrac-

tion, further discontinuities are removed by apodizing the spectrum with a cosine bell. This

involves multiplying 5% of each end of the spectrum by a cosine, to remove sharp spikes. This

is illustrated as the green line in Figure 7.4. Finally, the spectrum is renormalised to positive

values between 0 and 1 (red line).



7.2. Preparing Training Data 57

FIGURE 7.4: A plot of the cosine-tapered spectrum (green) which removes the
edge discontinuities from the previous spectrum (blue). The red line is a nor-
malised version of the green spectrum. It ensures that the flux is between 0 and
1. This process has been applied to the same DES16C2ma spectrum used in Fig-

ures 7.1 to 7.3.

7.2 Preparing Training Data

One of the most influential factors in an effective learning algorithm is ensuring that the train-

ing set is of a good quality and are consistent [13]. As such a lot of the software effort in this

project has been in ensuring that the data is well prepared before it is sent for training using

Tensorflow. When applying a machine learning tool, it is important that the problem that needs

to be solved is well defined. I have phrased this spectral classification problem as a standard

one-dimensional image classification problem, where the fluxes correspond to pixel intensities.

This has allowed me to use a very similar method to that used to solve the common MNIST

classification problem.
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7.2.1 Label and Image Data

As outlined in section 5.4.2 and Table 5.3, 306 different classification bins have been defined.

These correspond to the 17 different subtypes and each of their 18 corresponding age bins.

Each data template has two important properties: its label and image data. The image data

is simply made up of a 1024 point vector that corresponds to its normalised flux values. The

labels correspond to one of the 306 different classification bins. Instead of defining the label as

a string, it has been defined as a one-hot vector. This one-hot vector is 306 elements long, and

filled with zeros except for one entry which has a one (hence, the name). Each cell represents

a different classification bin, and the cell with a one indicates that the image data corresponds

to that bin. The advantage of using one-hot vectors is so that matrix multiplication can be used

when training the data.

7.2.2 Template sample bias

One common issue in classification problems is that some bins are much more populated than

others. This is an extremely significant problem in this thesis project as illustrated in Table

5.3. If this is not dealt with before training, then the machine learning algorithm will favour

the more populated bins because it has a higher chance of being correct relative to rest of the

training set.

There are three common ways to deal with this problem:

1. Undersampling

2. Oversampling

3. Adding weights

The first method involves undersampling or reducing the number of templates in the bin that

is over populated. This is only a good solution when each bin is already well populated. How-

ever, in this project, the main problem is a lack of data, so removing data from an already small
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dataset by undersampling is not ideal. The alternatives are to keep the whole dataset but over-

sample the bins that are under-populated by repeating them several times, or enough times to

match the most populated bin. The other possibility is to add an additional scaling weight to

the underpopulated bins so that the machine learning model is not biased towards particular

bins. This would be a valid method, but I have chosen to oversample instead because it can be

applied before training has even started.

However, while oversampling, it was important that the overall arrays that contained the im-

age and label data were shuffled to a random order before passing them into the training model.

This is so that the repeated spectra were not trained during the same training epoch.

7.3 Deep Learning Training

The multilayer neural network was developed using Tensorflow’s python library [1]. The pro-

cess of building the neural network is outlined in the following subsections.

7.3.1 Softmax Regressions

The deep learning model is trained on 306 different classification bins (see Chapter 5). In or-

der for the program to be able to rank each of these options for a given input spectrum, we

need to be able to define probabilities for each of the 306 bins. A Softmax regression enables

this by generalising a logistic regression to the case where it can handle multiple classes [41].

It involves two steps, first it adds up the evidence of an input spectrum being in a particular

classification bin, and then converts that evidence into probabilities. In order to add the evi-

dence for each bin, a weighted sum of the 1024-point input vector was prepared following the

method outlined in the previous section. This is illustrated in the following equation

evidencei =
1024∑
j=1

Wi,jxj + bi (7.6)
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where Wi is the weights, x is the input layer, i is a number from 1 to 306 indicating the clas-

sification bin, j runs from 1 to 1024 to sum over the entire input vector, and bi is a bias that is

added to allow some points in the vector be more independent of the input. Then, the evidence

tallies for each classification bin can be converted into Softmax regression probabilities, y, by

applying a Softmax function:

y = Softmax(evidence) (7.7)

where the Softmax function is defined as

Softmax(x)i =
exi∑
j
exj

. (7.8)

This function effectively normalises the evidence so that the total probabilities of all the classi-

fication bins sums to 1. These Softmax probabilities are very important in this thesis because

they provide a ranking of all the best matching classification bins. However, it is important to

note that these probabilities only state the relative chance that the particular classification bin

is one of the 306 options. As such, it does not provide an absolute measurement of whether the

object is a good fit, but only that it fits a particular bin more than the others.

The weights and biases are free variables that are computed by Tensorflow during the train-

ing process. However, in order to train the model, a ’cost-function’ is used to define what it

means for the model to have an accurate prediction. A common cost-function used in machine

learning is the cross-entropy, defined as

H ′y(y) = −
306∑
i=1

y′i log(yi) (7.9)

where y is the model’s prediction of the probability distribution, and y′ is the true distribution.

Effectively, y′ is a 306-point one-hot vector with zeros in all entries, except for one which is

filled by a 1. This entry represents the classification bin of the input spectrum. y is a 306-point

vector that represents the model’s prediction of the distribution. The sum of all the entries adds

to 1, and ideally, the entry with the highest probability would be the same as the entry with a 1
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in y′. Thus, the cross-entropy equation measures how inefficient the predictions are compared

to the truth.

Equation 7.9 is minimised during the training using a Gradient Descent Optimizer called Adam

Optimiser.

7.3.2 Building Layers

I have developed a neural network with two hidden layers, one input layer, and one output

layer. After some testing I found that two hidden layers gave a significantly better accuracy

than a single hidden layer (up to 10% better). I also tried using a 3-layer model but found that

there was relatively no improvement. As such two hidden layers were used in the model.

The layers were built by defining weights and biases for each layer based on the previous

layer. The input and two hidden layers were convolved after their weights and biases were

defined, and the Softmax regression probabilities were calculated after minimising the total

cross-entropy using an Adam Optimiser function.

7.4 Trained Models

A few different types of models were trained during this thesis. The first was the most suc-

cessful one which involved building the training set from all templates de-redshifted back to

z = 0. The second involved building a training set from a template set with a range of different

redshifts.

7.4.1 Trained at zero redshift

This model involved using the templates described in Chapter 5. The 306 classification bins

were used, and in each bin, the templates were all kept at a redshift of z = 0. This means that

the deep learning model was only trained to match an input spectrum if it was at redshift zero.
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As such, any input spectrum needs to be de-redshifted back to zero before it can be passed

into the matching algorithm. There are two ways to deal with this. Firstly, the user would

have to know the redshift beforehand and input it as a prior so that the input spectrum can be

de-redshifted before it is compared to the model.

Secondly, the algorithm could iteratively de-redshift the spectrum by varying amounts and

pass several versions of the input spectrum at varying redshifts. For example, the input spec-

trum would be de-redshifted by z = 0.1, 0.2, 0.3, 0.4, 0.5, and the five differently redshifted

spectra would be passed into the matching algorithm. For each of these five spectra, there

would be a separate list for the best matching classification bins. The issue then is how to rank

these differently redshifted spectra. I chose to combine the five lists, and rank them based on

their Softmax probabilities. Each classification bin would appear multiple times on the list,

and I chose to only use the highest Softmax probability for each classification bin in the Best

Matches List. A plot of the probability vs redshift for one of these classification bins is illus-

trated in Figure 7.5. In that figure I used 5000 different redshifts, instead of the 5 used in the

example I have been discussing.

Based on the plot, there is one major issue with this method. That issue is that we are trying

to compare Softmax probabilities from the different lists. This is not a reasonable comparison

because the Softmax probabilities are relative to the other probabilities in each of the five lists.

The method used for redshifting with this model is very complicated, and may not easily be

understood by the above explanation given. Nonetheless, the main takeaway message, is that

this method cannot be considered a valid approach to redshifting. As such a better method is

needed, and one is given in the following subsection. For this reason, this model is only used

if the redshift is known and input as a prior by the user.
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FIGURE 7.5: A plot illustrating the issues with determining redshift using the
zero-redshift model. The plot represents the probability of each redshift for a
particular arbitrary classification bin. The redshift with the highest probability is

z = 0.076.

7.4.2 Agnostic Redshift

A second approach to redshifting involves using a training set that includes template spectra

at a range of different redshifts. This would make the model invariant or agnostic to the red-

shift of an input spectrum. Ideally, an input spectrum could be classified into one of the 306

classification bins without needing to know the redshift.

This model has been trained by using the template spectra described in Chapter 5, and itera-

tively redshifting each of the templates from z = 0 to z = 0.5 in ∆z = 0.01 intervals. We still

make use of the 306 classification bins, but now in each of those bins there are a 500 times as

many spectral templates due to the fact that they have been shifted to 500 different redshifts.

While in theory this should work very well to make the classification algorithm invariant to

changes in redshift, several problems have been encountered that have not enabled this method

to be completely functional at this stage. One of the largest problems is that the training data

has a significantly larger dataset. As such, my laptop is not able to finish training without
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running out of memory. For this reason, I have made use of the Obelix Supercomputer at

UQ and have made use of 20 cores with a lot more RAM available. I have also reduced the

size of the dataset to have a lower redshift precision so that it is only 10-20 times larger than

the zero-redshift model. This has had some success, as illustrated in Chapter 8 but trains at

a significantly slower rate. In fact, training can take up to a few days to converge to a stable

accuracy. (Note that while training may take days, the classification process can complete in a

few seconds (see section 6.2)).

Nonetheless, a framework has been developed to determine redshift once this model is appro-

priately trained. This model is able to classify a spectrum into one of the 306 classification bins

without knowing the redshift. However, once the type and age of the supernova has been de-

termined, the redshift can then be calculated by cross-correlating the input spectrum with the

best matching template. Similar to the method discussed in section 6.1.2 the redshift that gives

rise to the highest cross-correlation will be the redshift of the input spectrum.

7.5 Interfaces

In accordance with the requirements and requests from members of the OzDES collaboration

(see section 4.6), two different interfaces have been provided in the project. The main one for

the purposes of OzDES is the developed graphical user interface. A python library available

on PyPI has also been made available so that users can more easily incorporate the results of

the classification into their work.

7.5.1 Graphical User Interface

I aimed to make the user interface as user-friendly as possible, with minimal clutter. The initial

landing page when a user first runs DASH is illustrated in Figure 7.6.

Instructions detailing how to start using the GUI have been provided in the README.md file

provided with the software. However, even without reading the file, several prompts have
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FIGURE 7.6: The initial landing page displayed to a user after they open DASH.

been designed to guide the user. In the top left, the user is asked to select a supernova data

file. Clicking "Browse" leads them to a directory explorer where they are prompted to select a

spectrum file. An example on an Ubuntu theme is illustrated in Figure 7.7.

Once the user has selected a file, they are able to set the "Priors". If they continue without

setting a redshift, they are prompted to select a redshift before continuing, this is illustrated in

Figure 7.8.

After a file and redshift has been selected by the user, the right side of the GUI populates with

a list of best matches, template information, and graphs. Figure 7.9 provides an example of the

final interface. Each of the important components have been labelled and their corresponding

functions are described below.
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FIGURE 7.7: After clicking "Browse" on the landing page, the user is prompted to
select a spectrum file. This is an example of how the user will be prompted. Note

that the examples use an Ubuntu theme.

FIGURE 7.8: Message prompting the user to select a redshift before continuing.

Label Guide:

1. Select a spectrum: The user is prompted to browse for a file, and the file name is labelled

above the button.

2. Select input redshift: The type of model can be selected by the user. In this case the

model: "Trained at z=0" has been selected, and the user is prompted to select the known

redshift of the input spectrum.

3. Select model: The user can select the Agnostic Redshift Model or the model trained with

the combined supernova and galaxy spectra. If the Agnostic Model is chosen, the user is

also prompted to select the known redshift range of the input supernova. These options
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FIGURE 7.9: A labelled example of a spectral file (DES16C2ma) being correctly
classified.

have been disabled because the models do not provide accurate results at the time of

writing.

4. Smoothing: The level of smoothing can be changed with the slider or text box. No

smoothing corresponds to zero, and would give the raw processed spectrum, while higher

smoothing uses a low-pass median filter with a lower frequency cut-off.

5. Re-fit: Once the redshift, smoothing or and other priors have been updated, the user

can click "Re-fit with priors" to recalculate the best matches. An option to cancel is also

available.

6. Progress bar: A loading progress bar provides the status of the matching process.

7. Best matches: A list of the best matching supernova classification bins are listed in this
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space. The columns represent in order: ranking of the best match, type of supernova,

age of supernova, probability of this classification bin as provided by the deep learning

Softmax regression analysis. The user can highlight different options to quickly update

which of the classification templates are illustrated in the graphing section below.

8. Select plotting template: If the user wants to test other classification bins instead of the

ones ranked in the Best Matches section above, they can use the drop-down menus to

select the supernova type, age. They can also add a host galaxy template to view on the

graphing pane below.

9. Select other supernova templates: The user can use the left and right arrow buttons

provided to select the other templates within the selected classification bin. This allows

the user to view what other templates within this bin the algorithm has trained on. The

name of the supernova, its type, and age are labelled on the left of the button separated

by underscores.

10. Chang redshift: This redshift is automatically updated to match the user’s input redshift

selected in the Priors. However, the user can user the slider or the text box to change the

redshift so that they can analyse whether a different match is possible.

11. Spectral graphing: This is the main graphing pane. It illustrates the input spectrum

(green) and the selected template spectrum (red). The horizontal axis the is the wave-

length in Angstroms, while the vertical axis is the normalised flux. The graphed spectra

have been pre-processed using the method outlined in section 7.1.

12. Best matching redshifts: If the agnostic redshift model, or a known redshift has not

been selected for the input spectrum, then DASH tries to calculate the redshift. This

graphing pane plots the probability of the possible redshifts. The horizontal axis is the

possible redshifts, while the vertical axis is the probability that the input spectrum is at

that redshift.
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7.5.2 DASH Python Library

While the GUI was the main interface developed for OzDES, a secondary pythonic interface has

also been made available. I have uploaded the DASH project to the Python Packaging Index

(PyPI) so that it can be easily installed with ’pip’. Typing the following into the command line

will install DASH onto a machine.

pip install deepstars

Note that I plan to replace "deepstars" with "DASH" in the near future. The software can also be

downloaded straight from the GitHub repository instead. The advantage of using ’pip install’

is that the main dependencies including numpy, scipy, and specutils are automatically pack-

aged and installed. However, the user will need to install Tensorflow and PyQt independently.

Once the library has been installed, it can be imported into any python script with

import deepstars

While the library is still in progress upon the request of other members of OzDES, a few li-

brary functions are available to quickly classify an input spectrum with a known redshift. An

example usage is illustrated below:

classification = deepstars.SNClassify(filename, redshift)

print(classification.best_matches())

In the above python code example, ’classification’ is an object of ’deepstars’. The class ’SNClas-

sify’ takes the file name of a input spectrum and a corresponding redshift. It then returns the

’classification’ object, where the list of best matching templates can be printed using the next

line. In the second line, ’best_matches’ is a function that returns a list of the best matching

classification bins with their corresponding Softmax regression probabilities.
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Chapter 8

Performance

This chapter details the final results of the developed matching algorithm. The algorithm is

first tested against the validation set of SNID templates, and is then test on actual data taken

at the AAT for OzDES within the last two months. In this second case, DASH can be directly

compared to outputs of SNID and Superfit.

8.1 Validation Set

From the total number of templates described in chapter 5, 80% were used for training the deep

learning algorithm and 20% were left for testing and validation. The training was deemed to

have finished once the training set was correctly classified 100% of the time by the algorithm,

and the validation set appeared to have plateaued.

The performance of the project on the validation set against a few different criteria is listed in

Table 8.1. The criteria are defined as follows:

Type: Correct broad type (i.e. Ia, Ib, Ic, II) identified by the matching algorithm.

Type (Ignoring Ib/c mismatches): Correct broad type identified by the matching algorithm if

Ib and Ic types being misclassified with each other are ignored. Another way of phrasing

this, is that this criterion defines three broad types: Ia, Ib/c, and II, instead of four.
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Subtype: Correct subtype (i.e. Ia-norm, Ib-pec, Ib-norm, etc.) identified by the matching algo-

rithm.

Type and Age: Correct broad type and the correct age bin identified by the matching algo-

rithm.

Type: Correct subtype and the correct age bin identified by the matching algorithm.

In the above criteria, a correctly identified match is strict in that it only refers to the classification

bin with the highest Softmax probability (i.e. the highest ranking match in the Best Matches

List). The percentage of each criteria that was correctly classified in the validation set is shown

in the table below.

Criteria Correctly Classified

Type 98%

Type (Ignoring Ib/c mismatches) 100%

Subtype 93%

Type and Age 91%

Subtype and Age 87%

TABLE 8.1: Performance of DASH on the validation set based on four different
criteria. Type refers to the broad type (i.e. Ia, Ib, Ic, II), while subtype refers
to one of the 17 different types defined in chapter 5. Subtype and age refers to
the algorithm choosing exactly the correct classification bin with the age correct.

Type and age refers to choosing the correct broad type and age.

For the purposes of OzDES the most important criteria is being able to distinguish the broad

type of the supernova. For the validation set, DASH gets this correct in 97.5% of the templates

tested. However, analysing this closer, the only mismatches of the type in the validation set

were type Ib and type Ic misclassifications with each other. These two type are often seen to be

very similar by astronomers [25, 21, 7], and they are often combined into a single broad type

Ib/c. DASH correctly classifies 100% of the validation templates under this criterion.

For the purposes of cosmological surveys, the primary goal is to confirm whether the observed

object is a Type-Ia supernova or not. Under this definition, DASH is 100% effective for this

validation set.
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8.1.1 Alternative Models

The above validation results refer to the training of the model trained with all templates de-

redshifted to z = 0. However, as outlined in section 7.4, a second redshift agnostic model was

also attempted in order to allow DASH to predict redshift. The main issue with this, however,

was that the agnostic model had a significantly larger and more complicated dataset which

meant that it took a lot longer to converge. In fact, using the Obelix Supercomputer at UQ

with 20 cores still meant that the algorithm would take a few days to a week to complete an

accurately trained model.

Figure 8.1 plots the correctly classified percentage of the supernova type against the training

epoch. The training epoch is an arbitrary scale that indicates the amount of training that each

model received. The figure indicates that the zero-redshift model converged and plateaued to

97.5% for the percentage of correctly classified types. However, the Agnostic Redshift model is

much slower to converge, and also crashes after a lot of training

Hence, one of the main reasons that I was not able to complete the redshift agnostic model

within this thesis time frame was that the Tensorflow model would crash after too much train-

ing. Upon research, it appears that this is a bug in Tensorflow, and can often be fixed by provid-

ing more memory to the program. The size of the training data is around 10 gigabytes. While

this is not too large for the Obelix Supercomputer, I think that the Tensorflow model stores a

lot of extra memory in RAM without deletion while it trains. Obelix only enables a user to set

the number of cores used, and the RAM provided is proportional to this. To train the model

illustrated in Figure 8.1 I made use of 40 cores. However, this may not have been enough due

to the amount of memory that Tensorflow stores during its training. As such, I think future

work will need to provide the training model with a significantly larger amount of memory so

that it can train for a longer period of time without crashing.
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FIGURE 8.1: Plot of the accuracy against training epoch for the two different
trained models. The training epoch refers to the relative amount of training that
each model received. The Agnostic Redshift model takes a longer time to train

and crashes after too much training.

8.2 Results with OzDES data

Testing with the validation set which is made up of clean supernova templates does not give

a very good indication of how DASH will function under real data. As such, I have used 23

spectra from the most recent results (Run024 and Run025) of the OzDES survey. This enables

DASH to be directly compared to both Superfit and SNID. I have used the same redshift ob-

tained by MARZ as an input. Table 8.2 is a list of the latest Astronomical Telegrams (ATELs)

released by OzDES [40, 18, 30, 29]. These have been classified by Dr Chris Lidman and Dr Brad

Tucker using a combination of Superfit and SNID.

Table 8.2 compares the classification stated on the ATEL with the classification by DASH. While
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accuracy is important, it should be noted that the speed of classification of DASH is signifi-

cantly better than SNID and Superfit. While the ATEL had to classify each spectrum individu-

ally, the DASH python library enabled me to classify all 23 spectra with two lines of code. This

DASH classification took approximately one minute to complete.

The last column in Table 8.2 confirms whether or not the DASH type classification matched

the ATEL type classification. Before analysing this, it is important to note that DASH is able to

accurately state both the subtype and the age of the astronomical object. Superfit classifications,

however, have only stated the broad type and whether or not the age is positive or negative.

Out of the 23 objects from the ATEL, DASH agrees with 20 of the classifications with very

high certainties. All of the correctly classified templates have softmax probabilities above 84%,

which is very high given that there are 306 different classification bins. The ATEL has placed

question marks on the classifications that are not certain. Two of the classifications that dif-

fer from DASH have a question mark, and thus the ATEL classification cannot be considered

reliable. The three incorrect cases are discussed below:

DES16X3es: Superfit has classified this as a Ia but has marked that it is uncertain on this clas-

sification. DASH, however, states that the object has a 92% chance of being a IIP with an

age of 22 to 26 days. In fact, after visually inspecting this spectrum, I think that the ATEL

classification is incorrect.

DES16X3jj: Superfit has again marked that it is not confident on classifying this spectrum as

a type II supernova. DASH places a very low probability on the spectrum being a Ic-pec.

However, given the low probability, the classification should not be considered reliable.

DES16E1ah: Superfit has stated that this is a type-II supernova, however DASH places a 75%

probabilitiy that the spectrum is a Ia-91T. It should be noted that the second option by

DASH was a type-II.

Overall, given the question marks by Superfit, DASH has correctly determined at least 21 out of

the 23 spectra from the ATEL. However, for the classifications that DASH and Superfit agreed,

DASH was able to provide a much stronger confidence on the classification than Superfit. It
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did this by not simply stating the broad type and post or pre-max age, but by accurately stating

the subtype as well as specific age bracket. This exemplifies that the DASH classifications are

significantly more detailed. Furthermore, the classification by DASH are orders of magnitude

faster than Superfit. All 23 classification took less than 60 seconds using DASH, but consumed

several hours of computation on Superfit.
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Name Redshift ATEL
DASH

Match?
Classification Classification Probability

DES16E1de 0.292 Ia? (+2) Ia-pec (+2 to +10) 91%

DES16E2dd 0.0746 Ia (+3) Ia-norm (+2 to +6) 89%

DES16X3km 0.0542 II (+) IIP (+6 to +10) 99.7%

DES16X3er 0.167 Ia (+2) Ia-91T (-2 to +6) 86%

DES16X3hj 0.308 Ia (0) Ia-norm (-2 to +2) 90%

DES16X3es 0.554 Ia? (0) IIP (+22 to +26) 92% x

DES16X3jj 0.238 II? (+) Ic-pec (-2 to 2) 37% x

DES16C3fv 0.322 Ia (-6) Ia-norm (-10 to +2) 99.8%

DES16C3bq 0.241 Ia (+0) Ia-norm (-2 to +6) 99.6%

DES16E1md 0.178 Ia (0) Ia-norm (-6 to +2) 99%

DES16E1ah 0.149 II (+) Ia-91T (+14 to +22) 75% x

DES16C3ea 0.217 Ia (+) Ia-norm (+10 to +26) 88%

DES16X1ey 0.076 II (+) IIb (+2 to +6) 38%

DES16C3bq 0.237 Ia (+) Ia-norm (-2 to +6) 97%

DES16E2aoh 0.403 Ia (+) Ia-norm (-2 to +6) 88%

DES16X3aqd 0.033 IIP (+) IIb (-6 to +2) 99%

DES16X3biz 0.24 Ia (-) Ia-norm (-14 to +2) 98%

DES16C2aiy 0.182 Ia (+) Ia-norm (-2 to +6) 99.99%

DES16C2ma 0.24 Ia (+) Ia-norm (+14 to +22) 99.2%

DES16X1ge 0.25 Ia (+) Ia-norm (+14 to +22) 99.7%

DES16X2auj 0.144 Ia (0) Ia-norm (-6 to +6) 84%

DES16E2bkg 0.478 Ia (0) Ia-norm (-2 to +6) 99%

DES16E2bht 0.392 Ia (+3) Ia-norm (-6 to +2) 58%

TABLE 8.2: Classification of supernovae released in the most recent ATELs by
OzDES [40, 18, 30, 29]. The first column is the name of the observed object, the
second column is the redshift determined by MARZ. The third column is the
classification given in the ATEL by OzDES. It details the type followed by the
age in brackets. A (+) indicates that it is after the maximum brightness, (-) indi-
cates that it is pre-max, while (0) represents that it is at maximum. A question
mark indicates that the ATEL is not certain on the classification. Most of these
measurements were taken by Superfit or SNID. The fourth column is the classi-
fication from DASH. The fifth column states the softmax regression probability
provided by DASH. The sixth column has a tick if the ATEL and DASH agree on

the type of the supernova, and a cross if they disagree.
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Chapter 9

Project Evaluation

9.1 Completion

The original project proposal for this thesis aimed to build upon previous software to design a

program capable of automating the classification process, while improving upon the speed of

previous work. I made the decision to try a completely new approach to solving this problem

that was very different to previous tools. The decision to use deep learning was a big risk,

for the reason that it had never been used for this type of spectral classification before, and

therefore had the potential to not be effective at all. I believe that this risk has definitely paid

off, and has enabled me to create a tool that is in many ways significantly better than previous

tools.

Overall, I have produced a very novel supernova classification tool, that has met or exceeded

the main objectives of the project. The tool is relatively user-friendly offering two different in-

terfaces. The GUI is not overly complicated, and allows for easy operation and classification of

spectra from a range of different file types. One of the programs main advantages over current

tools is its speed, which is orders of magnitude better than Superfit, and faster than SNID. This

is especially true when the user tries to classify several spectra at once. The second interface

offered is a python library that enables quick classifications without human inspection. This

advantage enables DASH to be a nearly completely autonomous program.
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The matching accuracy is very good at determining the correct type of the supernova, reaching

100% reliability on the validation set used. The degeneracies in the age and subtypes mean that

a classification on the age and subtype are approximately 87%. However, given that OzDES

was most interested in being able to determine the subtype, DASH has definitely met this

requirement. DASH works extremely well on signals with a high supernova signal-to-noise,

and is able to operate at least just as accurately as Superfit and SNID.

9.2 Comparison to Current Methods

Overall I think DASH is superior to the currently used classification tools for four important

reasons:

1. Speed

2. More specific classification

3. Accuracy

4. Installation and ease of use

9.2.1 Speed

The main improvement of DASH over current tools is the significant speed increase. The pri-

mary reason for the increase in speed is that machine learning does not iteratively compare with

templates, and instead classifies based on features in the spectrum. Thus, unlike SNID and Su-

perfit which increase their computation time linearly with the number of templates, DASH is

able to separate the training and testing stages. The classification of a single supernova takes

only a few seconds in DASH, but can take several tens of minutes in Superfit.

Moreover, while SNID is already a fast program, DASH is even faster, and this is particularly

true when classifying several spectra at once. By making use of the DASH library functions

available on PyPI, a user is able to quickly iteratively classify several spectra. By making use
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of Tensorflow’s C++ back-end, all of the different spectra can be passed into its background

session and quickly classified.

9.2.2 More specific classification

Inspection of Table 8.2 clearly highlights that DASH is able to provide a much more detailed

and specific classification than Superfit. Superfit is only able to classify into the four broad

types: Ia, Ib, Ic, II, and cannot specify the subtypes. Moreover, the age classification is also

much less precise as it usually can only state whether the spectra is post or pre maximum.

On the other hand, DASH is able to classify the subtype and the age bracket with a very high

accuracy (or softmax regression probability).

9.2.3 Accuracy

Based on the test comparison in Table 8.2, DASH can be stated to be at least as accurate as SNID

and Superfit. Nearly all of the spectral classifications were consistent with SNID and Superfit,

and the three that weren’t may in fact have been correct because Superfit identified that its

classifications were not certain.

It is possible that DASH has the potential have a higher accuracy than Superfit and SNID, but

this is difficult to test because the correct classification is not known for spectra that Superfit

could not classify.

One of the other main reasons why DASH’s accuracy has the potential to be superior is that it

matches based on identified features of the learning algorithm instead of iteratively searching

through templates. The advantage of this is that a classification is always made based on the

entire set of templates within a particular classification bin, rather than a single spectrum. This

reduces the impact of templates with incorrect classifications or unrepresentative spectra.
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9.2.4 Installation and Ease of Use

SNID and Superfit already have relatively intuitive and user friendly interfaces, and DASH

has matched this expectation. However, one of the main issues with Superfit is that it is very

difficult to install. This is partially due to the fact that it is written in IDL which is not easily

accessible to a personal computer due to its expensive License fee. On the other hand, DASH

has been written in Python, which is the most common language used among astronomers,

is freely available, and thus allows users to manipulate it as they wish. Moreover, DASH is

very simple to install, being available on GitHub and PyPI. It only has two dependencies that

are not included in the pip installation including Tensorflow and PyQt. Both of these are not

complicated to install, and thus make the installation of DASH a relatively straight-forward

process.

9.3 Use in Astronomy Community

This software was developed primarily for use by OzDES. At the time of writing, it is currently

being tested by members of the OzDES community including the director, Chris Lidman. Given

its impressive speed improvements, and the fact that it appears to match the accuracy of Su-

perfit, it is expected that DASH will soon replace current tools once some improvements (listed

in the next section) are made.

While the software was made for OzDES, DASH has been made versatile enough so that it can

be used by anyone and in particular any astronomer who is interested in classification. Some

members of the OzDES community from California and the UK have been interested in the

tool, and a python library function that enables quick classification without human-inspection.

The developed DASH python library allows for this, and may be adopted as a classification

tool in the near future.
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9.4 Disadvantages of DASH

Two disadvantages of DASH compared to some current tools is its inaccuracy with redshifting,

and the fact that it cannot identify host galaxies. Both Superfit and SNID are able to redshift

based on an input spectrum, and Superfit is somewhat able to identify and subtract the host

galaxy from the spectra. Both of these things can already be done by MARZ and can be input

as a prior into DASH. However, future work will aim to incorporate this into the program as

discussed in sections 9.5.1 and 9.5.2.

9.5 Future Improvements

There are still several missing features that have been requested by some OzDES members and

that would be very useful for a more advanced supernova classification tool.

9.5.1 Redshifting

While DASH has been shown to exceed previous software in the four listed criteria in section

9.2, one down-fall is that it is not able to provide an accurate estimate of the redshift of a

spectrum. Instead, at this stage, it requires an input redshift by a user. However, given that

several good redshifting tools already exist (such as MARZ), this is not detrimental to the use

of DASH. Future work will aim to train a redshift agnostic model, that will classify an input

spectrum independent of redshift and then identify redshift based on a cross-correlation with

the classified spectrum (see section 7.4).

9.5.2 Identify Host Galaxy

The current classification tools cannot easily classify a supernova from a spectra that has a

bright host. A future improvement of DASH should aim to train a new model that includes an

extra dimension of classification bins. While there are currently 306 bins for the 17 subtypes
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and 18 age bins, there could be an extra dimension for the 6 different galaxy types. This would

lead to around 1500 classification bins. The current spectra would be added to varying levels

of each of the 6 galaxy types in order to train each classification bin.

If the host galaxy and supernova can be classified together, then DASH will be able to subtract

the galaxy from the overall spectrum to provide the user with a separate supernova and host

galaxy. This has never been done before, but would be of enormous use to many members of

the astronomy community. As such, future work should aim to test the feasibility of this model.

9.5.3 False Positives

DASH provides the user with a softmax regression probability for each of the classification

bins. The problem with this, however, is that all of the classifications only state the probability

relative to all of the other classification bins. If the input spectrum does not match any of the

supernova types, it can lead to false-positive classifications. This is because the program does

not give an absolute measurement of whether the fit is good or not, but only states where it

is good relative to the other options. Cross-correlation methods on the other hand, can give

an absolute measurement. As such, future work should cross-correlate the input with the best

matches to determine whether the fit is above some absolute threshold, and can therefore be

considered to be reliable.

9.5.4 Python Library Functions

Currently the python library only consists of a single function to provide the user with the best

matching classification bins for a particular input spectrum. Future work should aim to extend

this library to include plotting comparisons, statistics of the classifications and other functions

in consultation with users of the software.
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9.5.5 GUI Features

Some extra GUI features can also be added to improve the experience of a DASH user. Firstly,

a pie chart or list that quickly sums the Softmax probabilities to identify the overall probability

for each of the four broad types has been a requested feature.

Secondly, an option to quickly turn on and off the continuum of the spectra that are being

graphed, instead of just subtracting it away will be a useful feature for users who wish to more

closely visually inspect the plots.

Finally, the GUI should enable a user to input several spectra at once from a FITS file. Currently,

the GUI only enables one file at a time, but future work should aim to enable several at once.
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Chapter 10

Conclusion

This thesis report has detailed the development of DASH, a novel supernova spectral classifi-

cation tool. The program has been made for the OzDES collaboration, and aimed to improve

upon current methods. Some of the main advancements of DASH have been its speed, accu-

racy in the specific details of the supernova, and its ease of use.

A review of the prior literature revealed that most classification tools have made use of tem-

plate matching algorithms with cross-correlation or chi-squared approaches. While I began my

thesis following this procedure, I soon realised that a novel approach was the only way that

my software could make significant advancements from current work. I have made use of a

Deep Learning algorithm which has enabled DASH to be orders of magnitude faster than the

two main previous tools: Superfit and SNID. The main drawback of these programs is that

they are either too slow and accurate, or fast but inaccurate. DASH has been able to be both

fast and accurate due to its very different approach. Instead of matching based on an iterative

comparison with templates, machine learning allows the software to train on the features that

make each supernova type. DASH has been tested on the latest OzDES data, and has proven

to be significantly faster and at least just as accurate as Superfit and SNID.

Thousands of supernova templates from the Berkeley SN Ia program and SNID have been used

to train the model. As more data becomes available, it is expected that DASH can be trained to

be even more reliable without sacrificing speed.
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Overall, this thesis has created two new interfaces for the astronomy community. First, a user-

friendly graphical interface has been developed to allow for visual inspection and analysis of

each classification. Second, a python library for quick classification of several spectra has also

been made available with easy installation with pip or from GitHub. Ultimately, the speed, ac-

curacy, user-friendliness and versatility of DASH presents an advancement to existing spectral

classification tools. As such, DASH is a viable alternative for the astronomy community.
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