What is DASH?

- Fast and autonomous supernova spectral classification tool
- Uses Deep Learning to train a matching algorithm
- Classifies spectra into specific type and age

SNIa: Ia-norm, Ia-91T, Ia-91bg, Ia-02cx, Ia-csm, Ia-pec

SNIb: Ib-norm, Ibn, IIb, Ib-pec

SNIc: Ic-norm, Ic-broad, Ic-pec

SNII: IIP, IIL, IIn, II-pec

- Graphical interface and python library available
- Tested successfully on
 - Operating Systems: Mac/Linux/Windows
 - Python 2/3

Problems with current methods

- Superfit and SNID rely on iterative template matching processes
 - Computation time increases linearly with the number of templates
 - Can only compare to one template at a time (rather than the aggregate set of each SN type)
- Chi-squared minimisations are slow
- Not autonomous: requires a lot of human-input

How DASH improves

- Speed
 - Autonomously classify several spectra at once
 - Significantly faster (example: 70 classified spectra in 18 seconds)
- Accuracy
 - DASH classifies based on features instead of templates
 - Uses aggregate set of templates rather than a single template
 - Softmax regression probabilities
- > Precision
 - More specific classification including age and specific type
- Installation and ease of use
 - Graphical interface and python library
 - Very simple installation and use

Validation Set Performance

- > **Type:** Correct broad type (i.e. Ia, Ib, Ic, II) identified by the matching algorithm.
- > Subtype: Correct subtype (i.e. la-norm, lb-pec, lb-norm, etc.) identified.
- > Type and Age: Correct broad type and the correct age bin identified by the matching algorithm.
- > Subtype and Age: Correct subtype and the correct age bin identified.

Criteria	Correctly Classified	
Туре	98%	
Type (Ignoring Ib/c mismatches)	100%	
Subtype	93%	
Type and Age	91%	
Subtype and Age	87%	

Results with OzDES Data

- OzDES data from the last couple of runs at the end of 2016.
- Matches Superfit in 100% of confirmed cases
- Classified all 23 spectra in <10 seconds!</p>
- Able to classify more spectra
 - Precise likelihood measurements (from softmax regression)
 - More precise measurement (with age and specific type)

Name	Redshift	ATEL	DASH		Maria
		Classification	Classification	Probability	Match?
DES16E1de	0.292	Ia? (+2)	Ia-pec (+2 to +10)	91%	~
DES16E2dd	0.0746	Ia (+3)	Ia-norm (+2 to +6)	89%	~
DES16X3km	0.0542	II (+)	IIP (+6 to +10)	99.7%	~
DES16X3er	0.167	Ia (+2)	Ia-91T (-2 to +6)	86%	~
DES16X3hj	0.308	Ia (0)	Ia-norm (-2 to +2)	90%	~
DES16X3es	0.554	Ia? (0)	IIP (+22 to +26)	92%	x
DES16X3jj	0.238	II? (+)	Ic-pec (-2 to 2)	37%	x
DES16C3fv	0.322	Ia (-6)	Ia-norm (-10 to +2)	99.8%	~
DES16C3bq	0.241	Ia (+0)	Ia-norm (-2 to +6)	99.6%	~
DES16E1md	0.178	Ia (0)	Ia-norm (-6 to +2)	99%	~
DES16E1ah	0.149	II (+)	Ia-91T (+14 to +22)	75%	x
DES16C3ea	0.217	Ia (+)	Ia-norm (+10 to +26)	88%	~
DES16X1ey	0.076	II (+)	IIb (+2 to +6)	38%	~
DES16C3bq	0.237	Ia (+)	Ia-norm (-2 to +6)	97%	~
DES16E2aoh	0.403	Ia (+)	Ia-norm (-2 to +6)	88%	~
DES16X3aqd	0.033	IIP (+)	IIb (-6 to +2)	99%	~
DES16X3biz	0.24	Ia (-)	Ia-norm (-14 to +2)	98%	~
DES16C2aiy	0.182	Ia (+)	Ia-norm (-2 to +6)	99.99%	~
DES16C2ma	0.24	Ia (+)	Ia-norm (+14 to +22)	99.2%	~
DES16X1ge	0.25	Ia (+)	Ia-norm (+14 to +22)	99.7%	~
DES16X2auj	0.144	Ia (0)	Ia-norm (-6 to +6)	84%	~
DES16E2bkg	0.478	Ia (0)	Ia-norm (-2 to +6)	99%	~
DES16E2bht	0.392	Ia (+3)	Ia-norm (-6 to +2)	58%	~

Installation

> pip install astrodash

For the graphical interface you will also need PyQt4

conda install pyqt=4

Also available open source at:

https://github.com/daniel-muthukrishna/DASH

Graphical Interface

Python Interface

```
import dash
classify = dash.Classify(filenames, knownRedshifts)
print classify.list_best_matches()
classify.plot_with_gui(indexToPlot=0)
```

In the next updates / Future improvements

- Display added probabilities of specific SN type
- False positive rejection
- Identification of Host Galaxy
 - Extra dimension of classification bins
 - CombinedSpectum = $\alpha(SN) + \beta(Host)$
- Redshifting (currently from host galaxy with user-input from MARZ)
 - Call MARZ and directly pull redshift
 - Agnostic Redshift Model
- Use past 4 years of OzDES data in Neural network training