Model-independent Cosmology

(and a little on Spectral Classification using Deep Learning)

Daniel Muthukrishna, University of Queensland, BEng/BSc

Supervisors: Dr David Parkinson, UQ

Dr Brad Tucker, RSAA, ANU

About me...

- Final year Honours Student at the University of Queensland
 - BSc (Physics)
 - BEng (Electrical & Aerospace)
 - Prospective ANU PhD student
- Main Research Areas
 - Supernova spectral classification
 - Machine learning
 - SN and BAO Cosmography
 - A cosmographic analysis of the transition to acceleration using SN-Ia and BAO, Muthukrishna, D.; Parkinson, D., Journal of Cosmology and Astroparticle Physics, submitted. <u>https://arxiv.org/abs/1607.01884</u>
 - GHIIR (Giant HII Regions)
 - Gemini South Observatory, Chile

Outline

- Deep Learning for Spectral Classification
 - Overview of my software
- Model Independent Cosmology (Cosmography)
 - Why not Cosmology?
 - Transition redshift
 - Main results from paper

Deep Learning Spectral Classification

- Deep Learning is changing the world...
- Motivation
- Why is it a difficult problem?
- Google's Tensorflow Library
 - Python/C++
 - How it works... briefly
 - Layers of feature Abstraction
- Software available on GitHub

What type of supernova is this?

Layers of Feature Abstraction

Deep neural network

Deep Learning Spectral Classification

- Deep Learning is changing the world...
- Motivation
- Why is it a difficult problem?
- Google's Tensorflow Library
 - Python/C++
 - How it works... briefly
 - Layers of feature Abstraction
- Software available on GitHub

Machine Learning

- Most of the classification software to date use a template matching techniques
 - Similar pre-processing, cross-correlation
- None of these programs have tried machine learning
 - Is a relatively new technique (always improving)
- What's wrong with machine learning?
 - Require on the order of thousands of learning samples to be effective
 - We don't have that many supernovae samples...

Machine Learning

- Add varying levels of Gaussian noise and create our own set of samples?
- It learns to find traits unique to each type of SN that maybe we haven't even noticed
- Implicitly cares about the emission/absorption lines
- Is faster because the learning stage is separate to the spectra being input
- Several powerful libraries already exist Tensorflow
 - Has had an enormous amount of success in other fields

Pre-processing

- Step 1: Bin onto a log wavelength scale with 1024 bins
- Step 2: Continuum Subtraction
- Step 3: Apodizing the edges with a cosine
- Step 4: Band pass filtering the input spectra

Model-independent Cosmology – Why?

- 2011 Nobel prize awarded for the discovery of cosmic acceleration
- Challenges our understanding of the universe leaving a few possibilities:
 - Is Einstein's gravity wrong on cosmological scales?
 - What is Dark Energy?
 - Makes up about 70% of the composition of the universe
- What if General Relativity is wrong?
 - An accelerating universe is an extraordinary claim
 - We need a range of models and datasets to check it
- Multiprobe: SNIa and BAO data

What is Cosmography

- Taylor series expansion of the scale factor
- Purely kinematic analysis (independent of any cosmological model)
- Assume FLRW metric
- Cosmographic parameters:

$$\begin{split} H(t) &= +\frac{1}{a}\frac{\mathrm{d}a}{\mathrm{d}t};\\ q(t) &= -\frac{1}{a}\frac{\mathrm{d}^2a}{\mathrm{d}t^2}\left[\frac{1}{a}\frac{\mathrm{d}a}{\mathrm{d}t}\right]^{-2};\\ j(t) &= +\frac{1}{a}\frac{\mathrm{d}^3a}{\mathrm{d}t^3}\left[\frac{1}{a}\frac{\mathrm{d}a}{\mathrm{d}t}\right]^{-3};\\ s(t) &= +\frac{1}{a}\frac{\mathrm{d}^4a}{\mathrm{d}t^4}\left[\frac{1}{a}\frac{\mathrm{d}a}{\mathrm{d}t}\right]^{-4};\\ l(t) &= +\frac{1}{a}\frac{\mathrm{d}^5a}{\mathrm{d}t^5}\left[\frac{1}{a}\frac{\mathrm{d}a}{\mathrm{d}t}\right]^{-5}. \end{split}$$

Taylor Expansion

• Scale factor:

$$\frac{a(t)}{a(t_0)} = 1 + H_0(t - t_0) - \frac{q_0}{2}H_0^2(t - t_0)^2 + \frac{j_0}{3!}H_0^3(t - t_0)^3$$

• Physical Distance:

$$D = c \int dt = c(t_0 - t)$$

Scale factor as function of distance

$$\frac{a(t_0 - D/c)}{a(t_0)} = 1 - \left(\frac{H_0 D}{c}\right) - \frac{q_0}{2} \left(\frac{H_0 D}{c}\right)^2 - \frac{j_0}{3!} \left(\frac{H_0 D}{c}\right)^3$$

Two issues with series expansions

Truncation problem

- Can be limited by going to more terms in the expansion
- But every additional term brings a new parameter that must be solved (q, j, s, l)

Convergence problem

- Redshift larger than zero has an inherent error in a series expansion
- Introduce new parameter, zeta

$$\zeta = \frac{z}{z+1}$$

$$D(\zeta) = \frac{c}{H_0} \{ \zeta - \frac{1}{2} q_0 \zeta^2 + \frac{1}{6} (-j_0 + 3q_0^2) \zeta^3 \}$$

If we add prior assumption of early deceleration (from CMB data), Region I and Region II are eliminated.
Region III represents a currently decelerating universe

BAO Data

Sample	Z	D_V/r_d	f(z)
6 dFGS	0.106	3.05 ± 0.137	
SDSS-MGS	0.15	4.48 ± 0.17	1.47 ± 0.08
BOSS-LOWZ	0.32	8.47 ± 0.17	2.78 ± 0.13
BOSS-CMASS	0.57	13.77 ± 0.14	4.52 ± 0.21
WiggleZ w/recon	0.44	11.50 ± 0.55	3.77 ± 0.25
WiggleZ w/recon	0.6	14.88 ± 0.67	4.88 ± 0.31
WiggleZ w/recon	0.73	16.86 ± 0.57	5.53 ± 0.31

 $f = \frac{D_V}{D_V^{\rm 6dFGS}}$

Fit SNIa and BAO Data

Minimise Chi-squared with MCMC

$$D_V = \left[\frac{d_L^2}{(1+z)^2} \frac{cz}{H(z)}\right]^{1/3}$$

MCMC results SNIa and BAO data

Transition Limits

Lower limits on redshift of acceleration at 95% confidence

Model	Transition limit	
q_0, j_0	$z_{\rm acc} > 0.44$	
q_0,j_0,s_0	$z_{\rm acc} > 0.21$	
q_0, j_0, s_0, l_0	$z_{\rm acc} > 0.14$	

Spectral Classification using Deep Learning and Model-independent Cosmology

Daniel Muthukrishna, University of Queensland, BEng/BSc

Supervisors: Dr David Parkinson, UQ

Dr Brad Tucker, RSAA, ANU